

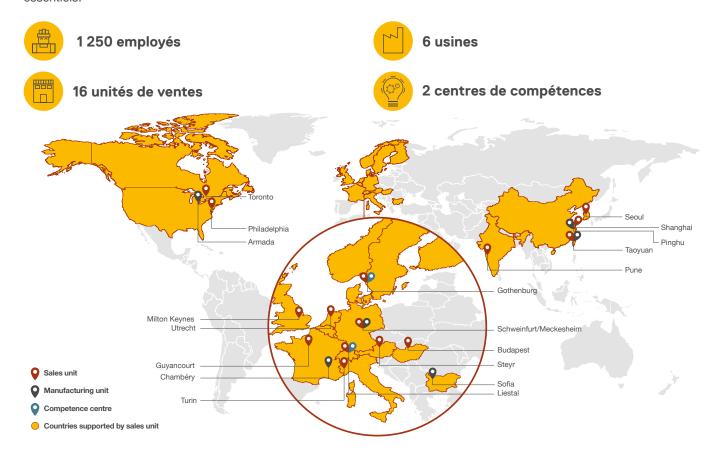
Ressorts à gaz STABILUS catalogue

Table des matières

1. Informations techniques	4
1.1. Propriétés et fonctionnement des ressorts à gaz	5
1.1.1 Mode de fonctionnement du ressort à gaz,	
ressort à gaz idéal	6
1.1.2 Ressort à gaz normal	8
1.2. Ressorts à gaz pour l'assistance à l'ouverture	. 11
1.2.1 Ressort à gaz STABILUS Lift-O-Mat	. 11
1.2.2 Lift-O-Mat : ressorts à gaz à amortissement	
hydraulique et dynamique	
1.2.3 Lift-O-Mat à courbe caractéristique progressive e	ŧ
dégressive : courbes caractéristiques	
1.2.4 Lift-O-Mat à blocage de fin de course	
1.2.5 Lift-O-Mat à frottement (Lift-O-Mat FR)	
1.2.6 Ressort à gaz STABILUS Hydro-Lift	
1.2.7 Ressort à gaz STABILUS Hydro-Lift-T	
1.2.8 Ressort à gaz STABILUS Kombi-Lift	
1.2.9 Ressort à gaz STABILUS Inter-Stop	
1.2.10 Ressort à gaz STABILUS Elektro-Lift	
1.2.11 Conception légère : ressorts à gaz à chambre de	
pression en aluminium	
1.2.12 Ressorts à gaz à tube rétractable	
1.2.13 Indications de montage et d'utilisation	
1.3. Ressorts à gaz pour l'équilibrage avec blocage	
1.3.1 Ressort à gaz STABILUS Bloc-O-Lift	
1.3.2 Clapet de réglage et amortissement	
1.3.3 Systèmes de clapets des Bloc-O-Lift	.24
1.3.4 Caractéristiques de blocage des ressorts à gaz	0.5
Bloc-O-Lift	
1.3.5 Indications de montage et d'utilisation1.3.6 Systèmes de déclenchements STABILUS pour	21
ressorts à gaz blocables	00
1.4. Ressorts à gaz à blocage STABILUS Hydro-Bloc san	
force d'extension	
1.5. Amortisseurs hydrauliques STABILUS Stab-O-Shoc	
1.5.1 Stab-O-Shoc Amortisseurs de mouvement et de	
de course	
1.5.2 Stab-O-Shoc Amortisseurs de vibrations	
1.6. Ressorts à gaz IndustryLine	
1.7. Sélection et montage d'un ressort à gaz	
1.7.1 Calcul de la force nominale F ₁ , calcul approximatif	
1.7.2 Calcul de la courbe de force manuelle, simulation	
graphique	
1.7.3 Services de conseils	
1.8. Annexes	

2. Gamme de production	
2.1. Ressorts à gaz Lift-O-Mat	
2.1.1 Diamètre de tige 6 mm	
2.1.2 Diamètre de tige 8 mm	
2.1.3 Diamètre de tige 10 mm	
2.1.4 Diamètre de tige 14 mm	
2.1.5 Diamètre de tige 20 mm	
2.1.6 Ressort à gaz Lift-O-Mat DD	
2.1.7 Ressorts à gaz Lift-O-Mat PTL	
2.1.8 Ressorts à gaz Lift-O-Mat UC	
2.1.9 Ressorts à gaz Lift-O-Mat FR	
2.1.10 Programme modulaire pour ressorts à gaz	
2.1.11 Accessoires	
2.2. Ressorts à gaz Bloc-O-Lift	
2.2.1 Blocage élastique - Diamètre de tige 8 mm	
2.2.2 Blocage élastique - Diamètre de tige 10 mm	7
2.2.3 Blocage rigide ec extension -	
Diamètre de tige 10 mm	81
2.2.4 Blocage rigide en compression -	
Diamètre de tige 10 mm	
2.2.5 Accessories	88
2.2.6 Systèmes de déclenchement mécaniques	
extrêmement pratiques	9
2.3. Amortisseurs hydrauliques Stab-O-Shoc	
2.3.1 Stab-O-Shoc HD15	
2.3.2 Stab-O-Shoc HD24	
2.3.3 Stab-O-Shoc HD24 MB	
2.3.4 Stab-O-Shoc TA20	
2.3.5 Stab-O-Shoc UC	
2.4. Ressorts à gaz IndustryLine	
2.4.1 Ressorts à gaz en traction	
2.4.2 Ressorts à gaz double course	
2.4.3 Programme de regonflage Stab-O-Fast	100
3. Clé de commande	
3.1. Clé de commande	
3.2. Cahier des charges et proposition de montage	106

L'innovation comme héritage


Ewellix est un fabricant ayant une présence mondiale, et une société innovatrice pour les solutions de mouvements linéaires et d'actionnement utilisées dans l'automatisation des assemblages, les applications médicales et les engins mobiles. Le groupe Ewellix, qui faisait autrefois partie du groupe SKF, est composé de 16 unités de vente et 6 usines. Les ventes nettes s'élèvent à environ 250 millions d'euros et nous employons environ 1250 personnes. Le siège social d'Ewellix est situé à Göteborg, en Suède, et appartient à Triton.

Un leadership technologique

Notre voyage a commencé il y a plus de 50 ans au sein du groupe SKF, un fournisseur mondial de technologie de premier plan, avec les premières usines de vis à billes et à rouleaux. Notre histoire chez SKF nous a fourni l'expertise nécessaire pour développer de nouvelles technologies et les utiliser pour créer des produits de pointe offrant à nos clients un avantage concurrentiel. En 2019, nous sommes devenus indépendants du Groupe SKF et avons changé notre nom pour devenir Ewellix. **Nous sommes fiers de notre héritage.** Ceci nous donne une base solide pour bâtir une entreprise agile, guidée par l'excellence en ingénierie, qui en font les atouts essentiels.

Une présence globale et un support local

Notre implantation globale nous permet de fournir des composants standards et des solutions sur mesure dans le monde entier, en apportant le support technique nécessaire. Les relations durables avec nos distributeurs partenaires nous permettent d'accompagner nos clients dans plusieurs secteurs. Chez Ewellix, nous ne fournissons pas que des produits, nous concevons aussi des solutions intégrées qui permettent à nos clients de concrétiser leurs ambitions.

Une expertise unique en ingénierie

Notre industrie est en mouvement ; elle pousse vers des solutions qui réduisent l'impact environnemental et tirent partie des nouvelles technologies.

Nous fournissons une fabrication et une expertise technique pour accompagner nos clients dans leurs défis.

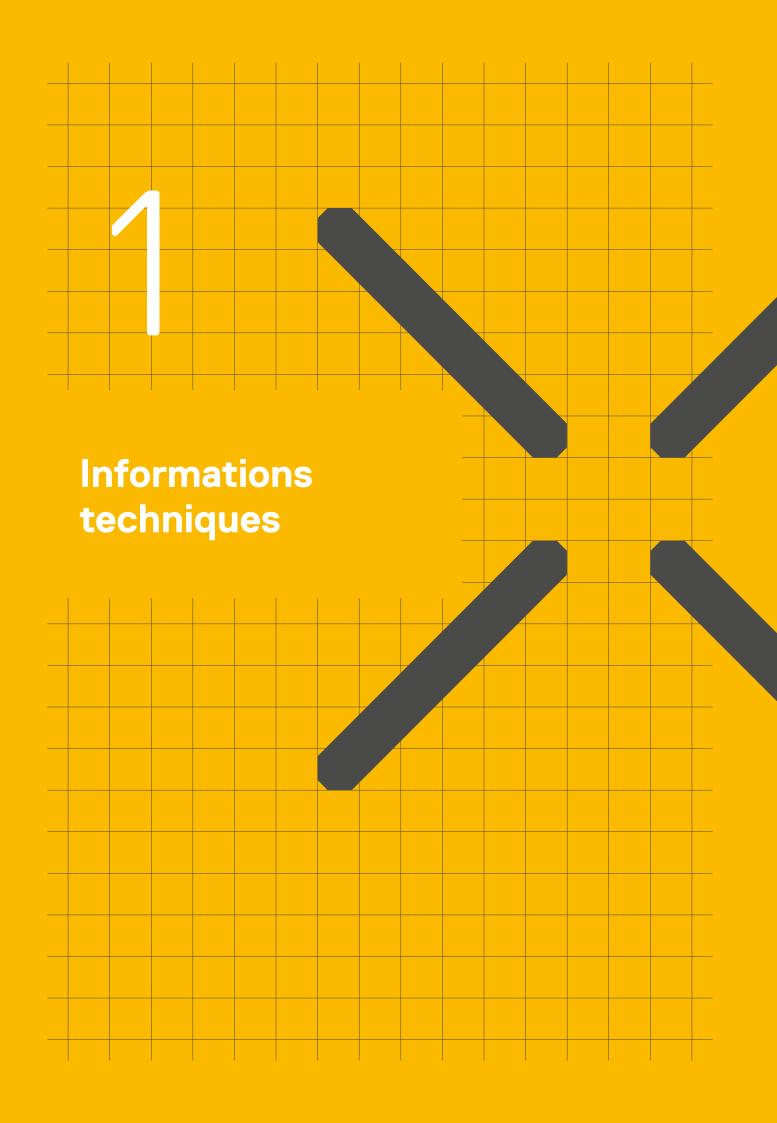
L'ingénierie du futur

Nous travaillons sur un large éventail de secteurs d'activités, dans lesquels nous proposons des solutions offrant des fonctionnalités essentielles pour les applications critiques des entreprises.

Pour l'industrie médicale, nous fournissons des composants de précision destinés à être utilisés dans la majorité des équipements médicaux.

Notre compréhension inégalée des systèmes d'automatisation industrielle est basée sur des décennies de recherche sur les composants et les techniques d'automatisation de pointe

Notre connaissance approfondie des engins mobiles (machines agricoles et de chantiers, véhicules ...) nous permet de proposer des solutions électromécaniques puissantes et fiables pour les conditions les plus difficiles. A travers notre réseau de distribution industrielle, nous fournissons une expertise linéaire à nos partenaires, leur permettant de servir les clients avec la plus grande efficacité.


Nous offrons l'excellence

Nous disposons d'une connaissance unique des équipements linéaires et de la façon dont ils sont intégrés dans les applications clients pour leur apporter de meilleures performances et accroître l'efficacité de leurs machines.

Nous aidons nos clients en créant des équipements qui fonctionnent plus vite, plus longtemps et qui sont fiables et durables.

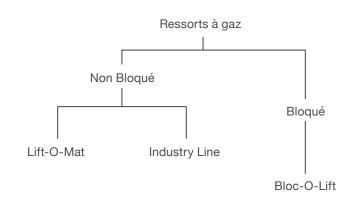
Nous fournissons une grande variété de composants de mouvement linéaire et d'actionneurs électromécaniques pour équiper toutes les applications d'automatisation, aidant ainsi nos clients à réduire leur impact environnemental, leur consommation d'énergie et leur maintenance.

1.1. Propriétés et fonctionnement des ressorts à gaz

Les ressorts à gaz servent à l'équilibrage et à l'assistance à l'ouverture dans toutes les applications pour lesquelles on souhaite une fonction de réglage confortable et sûre. Comparés aux ressorts mécaniques, les ressorts à gaz se distinguent par:

- · une constante de raideur plate (faible montée en force), même en cas de forces élevées et de courses importantes:
- · un faible encombrement et une simplicité de montage;
- · une courbe caractéristique qui peut, au choix, être linéaire, dégressive ou progressive, pour une forme extérieure identique.

Les ressorts à gaz doivent leur énergie à la compressibilité du gaz qu'ils renferment. Cette particularité, ajoutée à leur géométrie, permet aux ressorts à gaz d'assurer d'autres fonctions que celle d'assistance, telles que :


- · l'amortissement du déplacement, ce qui permet la suppression d'autres éléments amortisseurs;
- · le blocage en n'importe quelle position ainsi qu'en fin de course; les mécanismes peuvent donc être supprimés;
- · un comportement élastique ou rigide en position de blocage;
- · le contrôle de la vitesse de sortie de la tige.

D'autres fonctions peuvent être obtenues par la combinaison des caractéristiques ci-dessus. On utilise souvent des appareils possédant un amortissement des déplacements combiné à un blocage en fin de course. Une autre variante consiste à réaliser des appareils avec amortissement et courbe caractéristique progressive, etc.

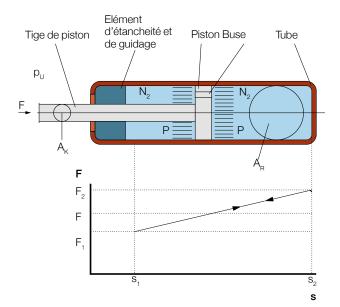
Les ressorts à gaz STABILUS se classent en trois types, selon leurs applications (→ figure 1)

Le ressort à gaz Lift-O-Mat est essentiellement mis en œuvre en tant qu'élément de réglage pur. Les exemples d'utilisation les plus typiques sont les hayons arrières ainsi que les capots moteur des automobiles. Le ressort à gaz Bloc-O-Lift assure les mêmes fonctions que Lift-O-Mat sauf que Bloc-O-Lift offre la possibilité de se bloquer en n'importe quelle position intermédiaire. C'est ainsi par exemple que le ressort Bloc-O-Lift trouve son utilisation pour le réglage du dossier des sièges de bureau ou pour le réglage de l'inclinaison des lits. Pour le réglage de la hauteur d'assise des sièges de bureau, sont utilisés les ressorts à gaz blocables Stab-O-mat et Stab-O-bloc. En tant que colonne-support, ces ressorts à gaz sont capables, outre le réglage en hauteur en continu, de transmettre également des forces transversales et des moments de flexion.

Figure 1

1.1.1 Mode de fonctionnement du ressort à gaz, ressort à gaz idéal

Le ressort à gaz est un système hermétiquement clos comprenant un tube sous pression, une tige de piston avec son piston, un gaz en tant que vecteur d'énergie et de l'huile pour lubrifier le système d'étanchéité. L'énergie du ressort à gaz est fonction de la compressibilité du gaz inclus dans le vérin (N_a).


La figure 1 présente le schéma de principe du ressort à gaz. Pour faciliter la compréhension, l'explication du mode de fonctionnement et la description mathématique du système sont effectuées à l'aide du ressort à gaz idéal, pour lequel on ne tient pas compte des effets du frottement, des phénomènes de laminage et de l'influence de la température.

Force et courbe caractéristique du ressort à gaz idéal

La tige de piston, dont la section est A, est guidée dans le tube de pression, de section A (igure 1). Un joint d'étanchéité disposé entre la tige de piston et le tube sépare de l'environnement, avec une pression pU, le gaz en surpression p. Le piston est perméable (buse), de sorte que la même pression règne de part et d'autre du piston.

Figure 1

Schéma du ressort à gaz

Le bilan des forces au niveau du piston, quelle que soit sa position, est alors :

$$F + p (A_{R} - A_{K}) - p x A_{R} = 0$$

$$F = p \times A_{\kappa}$$

Ainsi, la force nominale du ressort F est le produit de la pression interne de l'appareil et de la section de la tige de piston. Dans le vérin idéal, le piston sert uniquement d'élément de guidage (Influence de la température sur le ressort à gaz normal, page 10).

Si l'on admet qu'à l'état sorti, la pression dans le ressort à gaz $(s = s_i)$ est p., la force qui en résulte est alors :

$$F1 = p_1^{TM} A_K$$

Lors de la rentrée de la tige de piston dans le tube, le volume de gaz est diminué de la valeur du volume de la tige et simultanément, la pression dans l'appareil est augmentée. A l'état rentré du ressort à gaz (s = s_2), il y règne alors la pression p_2 , soit la force de ressort :

$$F_2 = p_2^{\text{TM}} A_k$$

Les deux forces figurent sur le diagramme de la **figure 1** et y sont reliées par une courbe caractéristique linéaire. Dans le cas du vérin idéal, cette courbe vaut pour l'extension aussi bien que pour la compression de la tige de piston. La relation entre la modification de pression et la modification de volume est décrite par l'équation polytropique:

$$p^{TM} V^n = const. = p1^{TM} V^n$$

L'allure de la courbe peut se calculer à partir de l'équation (1), en tenant compte de l'équation polytropique :

2)
$$F = p_1^{TM} A_k (V_1 / V)^n$$

avec
$$V = V_1 - A_{\kappa}^{TM} s$$

et
$$V_1 = A_R (s_2 - s_1)$$

 V_1 étant le volume de gaz compressible à l'état sorti, donc en début de course s1 du ressort à gaz. A_K^{TM} s est la section de la tige de piston diminuée de la valeur s de la course effectuée.

A partir de l'équation **2)**, on peut lire directement les valeurs d'influence qui modifient la courbe du ressort à gaz. Ces valeurs sont :

la surpression p, du gaz contenu dans le vérin,

la section de la tige de piston A_k,

le volume de gaz $\rm V_1$ disponible, respectivement la section du tube de pression $\rm A_{\scriptscriptstyle B}$

En faisant varier les éléments ci-dessus dans l'équation 2), on obtient les courbes de la **figure 2**. On y représente les changements d'état isothermes (n = 1). Cette simplification est admissible à condition que le vérin ne soit pas actionné en permanence, afin que la température du gaz ne subisse pratiquement pas de modification du fait de la rentrée de la tige.

Si par exemple on augmente la pression de remplissage p1 du ressort à gaz, on constate un décalage parallèle de la courbe caractéristique vers le haut. Des tiges de piston de plus grand diamètre, à pression de remplissage et géométrie de tube de pression identiques, conduisent également à l'augmentation de la force du ressort à gaz. Pendant que la montée en force à l'état sorti (s,) s'accroît de façon linéaire, l'augmentation de la force à l'état rentré (s₂) – du fait du plus grand volume de la tige de piston, puisqu'il est rentré - est exagérément forte. Si l'on utilise des tubes de pression avec une section AR, plus faible ou si l'on ajoute de l'huile dans le tube de pression, le volume de gaz V1 se trouve réduit d'autant. L'élasticité du ressort à l'état détendu reste alors inchangée. Toutefois, l'élasticité à l'état comprimé s'accroît d'autant plus, puisque que le gaz est comprimé davantage lors de la rentrée de la tige.

Constante de raideur et pente du ressort à gaz idéal

La figure 2 comporte un paramètre supplémentaire, qui est la constante de raideur x. Elle est la mesure de l'augmentation de la force tout au long de la course du ressort, quelle que soit l'allure de la courbe d'élasticité : linéaire ou incurvée. La constante de raideur se définit comme étant le quotient des forces du ressort à gaz dans les positions de fin de course (pour le ressort à gaz normal, aux points de mesure définis à cet effet, (> Force et courbe caractéristique du ressort à gaz normal, page 8).

$$X = F_2/F_1 = V_1/V_2$$

3)
$$X = V_1/(V_1 - A_K (s_2 - s_1))$$

Lorsque la constante de raideur x est petite – diamètre du tube important et faible section de la tige – la courbe caractéristique est presqu'une droite. Par rapport aux ressorts mécaniques, la montée en force en fonction de la course est très faible. Par la différenciation de l'équation de la force 2), on obtient avec n = 1 la pente c:

$$c = dF/ds = p_1^{TM} A_K^2^{TM} V_1/(V_1 - A_K^{TM} s)^2$$

Si la courbe caractéristique est linéaire, la pente se calcule de manière simple à partir des quotients différentiels de cette courbe :

4)
$$c = \Delta F/\Delta s = F_1 (x - 1)/(s_2 - s_1)$$

Travail du ressort à gaz idéal

L'énergie potentielle emmagasinée lors de la compression du ressort à gaz est disponible lors de l'extension, comme une force produite capable d'exercer le travail. La force d'extension correspond à la surface sous la courbe caractéristique F(S) telle que représentée dans la **figure 3**.

et l'équation 2):

5)
$$dW = p_1^{TM} A_K (V_1/V) n^{TM} ds$$

Le travail W peut se déterminer par l'intégration de l'équation (5) avec n=1 (modification d'état isotherme) pour toutes les positions de la course du ressort à gaz :

$$W = -p_1^{TM} V_1^{TM} In (V_1/V)$$

Pour la courbe caractéristique de la **figure 3**, le travail utilisable W_2 en position fin de course $s=s_2$ est le suivant :

$$W_2 = -p_1^{TM} V_1^{TM} \ln (V_1/V_2)$$

Figure 2

Courbe caractéristique en fonction de diverses grandeurs d'influence

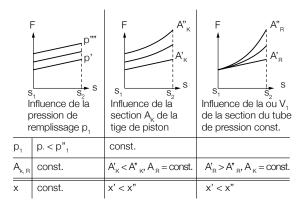
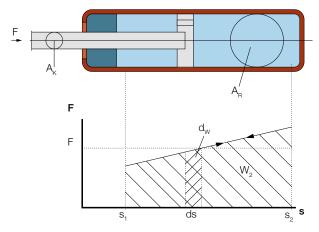



Figure 3

Travail du ressort à gaz

REMARQUE : la capacité de travail du ressort à gaz normal est diminuée par le frottement en entrée et sortie de tige (> voir 1.2.1).

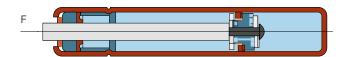
1.1.2 Ressort à gaz normal

Par la suite, nous allons nous intéresser à l'influence sur le fonctionnement du ressort à gaz, des facteurs jusqu'à présent négligés, tels que la résistance due au frottement des éléments d'étanchéité, la résistance de laminage de la buse de piston et la température du gaz. Ces explications concernant le ressort à gaz normal s'appliquent à tous les types de ressorts à gaz.

Force et courbe caractéristique du ressort à gaz normal

A titre d'exemple, on trouvera à la **figure 4** la courbe caractéristique du ressort à gaz normal. Au point B, le ressort est complètement rentré. La sortie commence à ce point, sachant que pour faire bouger la tige de piston, respectivement la charge extérieure, on dispose de la force d'extension le long de la ligne A-B. Au point A, le ressort est en extension totale. Pour rentrer la tige de piston, l'utilisateur doit fournir, outre la force d'extension, la force de frottement FR du ressort.

Le type et l'importance de la force de frottement dépendent du fonctionnement du ressort. Lorsque la tige de piston se déplace dans un sens ou dans un autre, il se produit une force de frottement dynamique ${\sf F}_{\sf R\,dyn}$, alors qu'à l'état repos, c'est la force de frottement statique ${\sf F}_{\sf R\,stat}$ qui agit. La différence peut s'expliquer à l'aide des deux modes de mesure. Les courbes représentées s'appliquent également à des appareils à blocage.


Mesure dynamique

Le ressort à gaz en position d'extension est repoussé à vitesse constante jusqu'en fin de course. On contrôle ensuite, à la même vitesse, le retour en extension de la tige de piston, en notant le gradient de la force. La différence des forces de compression et d'extension par rapport à la force du ressort à gaz idéal est, selon la **figure 4**, de \pm $F_{\rm R\,dyn}/2$. Cette force de frottement est due à la résistance de laminage de la buse de piston ainsi qu'au frottement au niveau de la bague d'étanchéité du piston et de l'élément d'étanchéité guidage du ressort.

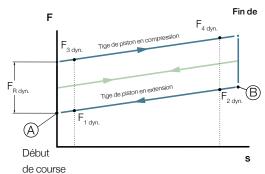
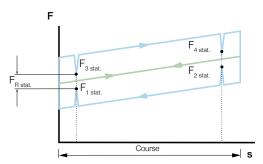

L'importance de la résistance de laminage dépend de la vitesse de mesure ou de déplacement. C'est ainsi qu'à de grandes vitesses de compression et d'extension, on aura un frottement dynamique élevé et qu'à de petites vitesses, on aura un frottement dynamique faible. Il est possible de faire varier la résistance de laminage en agissant sur la forme et sur la taille du canal d'écoulement dans le piston et ainsi, l'utiliser de manière optimale en fonction de chaque application (L> voir 2.1).

Figure 4


Courbe caractéristique du ressort à gaz normal

Mesure dynamique

Mesure statique

Le joint d'étanchéité de la tige de piston est conçu de telle sorte qu'on parvienne à un résultat optimum entre un faible frottement et une longue durée de vie du ressort à gaz. La force de pression qu'exerce le joint d'étanchéité sur la tige de piston dépend de la force, respectivement de la pression de remplissage.

De grandes forces d'extension requièrent une grande force de serrage du joint d'étanchéité, afin que la fonction du ressort puisse être maintenue sur une très longue durée.

Pour la détermination de grandeurs reproductibles, des points de mesure caractéristiques (pour les ressorts à gaz standard, 5 mm après le début de la course et 5 mm avant la fin de la course) ainsi que les désignations des forces correspondantes (figure 4) ont été définis. Les points de mesure et les forces correspondantes sont spécifiés dans chaque dessin de ressorts à gaz STABILUS.

Mesure statique

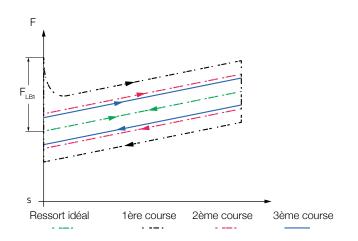
Tout comme la mesure dynamique, la mesure statique s'effectue à vitesse constante. Toutefois, le mouvement de la tige de piston est interrompu aux points de mesure, afin de déterminer les forces.

La différence des forces de compression et d'extension par rapport à la force du ressort à gaz idéale est alors de \pm $F_{\rm R\ stat}/2$. La force de frottement $F_{\rm R\ stat}$ résulte du frottement par adhérence des éléments d'étanchéité. Elle est plus petite que le frottement dynamique, moyennant quoi par la force de maintien du ressort à gaz F1 stat, est plus grande que la force $F_{\rm 1\ dyn}$ lors de l'extension de la tige. Généralement, lorsque l'on parle de la force d'extension du ressort à gaz, il s'agit toujours de la force d'extension $F_{\rm 1\ stat}$. Les deux mesures s'effectuent à température normalisée.

 $T_0=20~^{\circ}$ C. Toutes les valeurs de fonctionnement du ressort à gaz se rapportent à cette température. Afin d'obtenir des résultats de mesure reproductibles, on effectue deux courses préalables, avant la course de mesure. Les courbes caractéristiques de la première, deuxième et troisième courses (course de mesure) sont portées à la **figure 5**.

La pointe de force au début de la première course s'appelle force de gommage F_{LB1} . Elle se manifeste uniquement lorsque le ressort à gaz n'a pas servi pendant un certain temps. Le film de lubrification sous la lèvre d'étanchéité est alors déplacé et de ce fait, le frottement par adhérence s'accroît. La deuxième et la troisième course fournissent des valeurs de fonctionnement pratiquement identiques, car la force de gommage a disparu.

Constante de raideur


Comme déjà indiqué au point **Constante de raideur et pente du ressort à gaz idéal, page 7**, l'importance de la force peut être déterminée par la pression de remplissage, l'allure de la courbe d'élasticité par les dimensions de l'appareil (section du tube et de la tige). La constante de raideur se situe dans la plage approximative suivante :

1,01 < x < 1,6

Le seuil inférieur est lié à la géométrie de l'appareil selon l'équation (3), la limite supérieure dépend de la résistance mécanique des composants, incluant les facteurs de sécurité qui s'imposent.

Figure 5

Courbe caractéristique à la première, deuxième et troisième course

Influence de la température sur le ressort à gaz normal

Outre le frottement et la résistance de laminage, la température du gaz contenu dans le système a une influence sur la force du ressort à gaz. En première approche, cette relation peut se déduire de l'équation concernant un gaz idéal

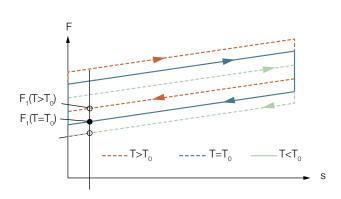
$$p TM V = n TM R TM T$$
.

$$p(T)/p = T/T_0 = F(T)/F$$

Dès lors, la force du ressort à gaz à une température donnée se calcule par exemple «au point de mesure en extension» par l'équation :

$$F_1(T) = F_1^{TM} T/T_0$$

 F_1 étant la force à la température normalisée $T_0 = 20~^{\circ}\text{C}$ (293 K). Les courbes caractéristiques d'un ressort à gaz aux températures $T = T_0$, $T > T_0$ et $T < T_0$ sont données à la **figure 6**.

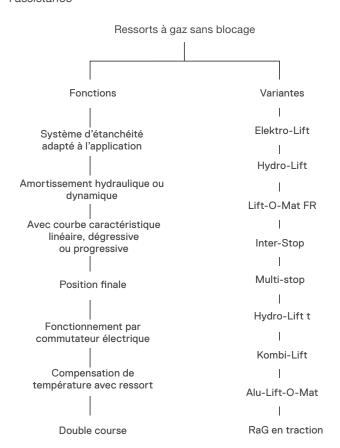

D'une manière générale, le ressort à gaz est conçu pour une température de fonctionnement maximale de +80 °C. Ce faisant, on tient compte des propriétés réelles de l'azote (N₂) en ce qui concerne les variations de température et de pression. Les variations de force en fonction de la pression et de la température du gaz sont également représentées à la figure 6.


Durée de vie des ressorts à gaz

Pour les utilisations dans le secteur automobile, les ressorts à gaz sont construits pour atteindre sans problème 45 000 cycles sur toute la course. La perte de force déterminée en marche permanente est alors inférieure à 10%. Selon les exigences, les ressorts à gaz sont équipés d'un système d'étanchéité spécifique pour atteindre un grand nombre de cycles. C'est ainsi par exemple que des ressorts à gaz peuvent résister jusqu'à un million de cycles, sur la totalité de la course, pratiquement sans dommage.

La durée de vie du ressort à gaz dépend, outre du nombre de manœuvres, de la perméabilité naturelle des composants. Des utilisations à des températures de fonctionnement proches de la température ambiante ont des effets positifs sur la durée de vie du ressort à gaz. En général, la perte de force dépend du type d'utilisation (température environnante, influence de l'environnement etc.) ainsi que des éléments d'étanchéité utilisés. La perte de force des ressorts à gaz standards de STABILUS est, pendant les deux premières années, inférieure à 8% de la force d'extension annoncée.

Figure 6
Variations et évolution de la force à différentes températures

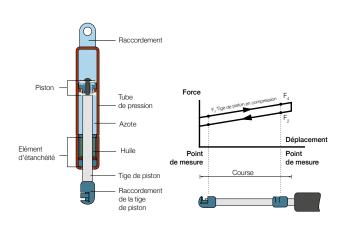

1.2. Ressorts à gaz pour l'assistance à l'ouverture

Le chapitre suivant renseigne sur les multiples variantes de ressorts à gaz STABILUS, utilisés pour aider au déplacement ou à l'équilibrage d'une charge. Ces ressorts sont utilisés lorsqu'il n'y a que deux positions, comme par exemple les portes ou les volets, que l'on fait passer de la position ouverte à la position fermée (par exemple le hayon d'une automobile).

La figure 1 donne une vue d'ensemble sur les désignations des produits et sur les variantes de ressorts. Elle fournit également la gamme des forces et des dimensions disponibles. Pour obtenir des données plus détaillées en ce qui concerne les cotes et les forces, consulter le catalogue STABILUS comportant l'ensemble des modèles.

Figure 1

Vue d'ensemble des ressorts à gaz STABILUS pour l'assistance


1.2.1 Ressort à gaz STABILUS Lift-O-Mat

La figure 2 est une représentation schématique du type standard de ressort à gaz STABILUS, le Lift-O-Mat. L'appellation (lift, lifter) désigne la fonction de l'appareil, lequel par exemple sur un véhicule, facilite et guide le levage du hayon arrière. En l'occurrence, le ressort remplit deux fonctions, à savoir le déplacement et l'amortissement. La force de déplacement est produite par la pression de gaz régnant dans l'appareil, l'amortissement par la composition du piston.

Vous trouverez ci-après une présentation des principaux composants du ressort à gaz Lift-O-Mat, qui jouent un rôle essentiel dans les tâches clés que sont l'ajustement et l'amortissement. L'ajustement ou - force du ressort - est généré par la pression du gaz au sein du dispositif. L'amortissement est lui généré par l'ensemble piston.

Figure 2

Lift-O-Mat, construction et courbe caractéristique

Ensemble piston du Lift-O-Mat

L'élément principal de l'ensemble piston est le piston à labyrinthe STABILUS, représenté à la **figure 3**. Il amortit le mouvement de la tige lors de l'extension. L'importance de l'amortissement dépend de la résistance hydrodynamique du labyrinthe. Par le positionnement de l'orifice dans le piston, on parvient à déterminer une vitesse d'extension parmi la large gamme de vitesses possibles.

En cas de «canal d'écoulement long» dans le piston, du fait de la grande résistance hydrodynamique, les vitesses d'extension sont faibles. En cas de «canal d'écoulement court», les vitesses d'extension sont grandes. La bague d'étanchéité mobile dans le sens axial assure ici la fonction de guidage. Dans l'exemple de la figure 3, la bague obture le passage entre le pourtour du piston et le tube de pression, dans le sens d'extension de la tige. Le gaz doit alors passer par le labyrinthe (voir canal d'écoulement long sur la figure 3) avant d'atteindre la chambre de pression opposée. Par rapport à l'ensemble piston non amorti (piston sans bague d'étanchéité), on obtient une diminution de la force d'extension et de la vitesse d'extension v du ressort à gaz.

En compression, la bague d'étanchéité vient se loger dans une rondelle dentée (rondelle-étoile) et dégage ainsi le passage entre le pourtour du piston et le tube de pression. Le gaz peut dès lors traverser le piston presque librement, de sorte que la force de compression est inchangée par rapport à un ressort non amorti. Avec un tel ensemble piston, le ressort à gaz est amorti à l'extension. En fonction de la combinaison et de la disposition des composants de l'ensemble piston, on a les caractéristiques de fonctionnement, les vitesses d'extension et les diagrammes de force donnés à la figure 4.

A partir du grand nombre de variantes de piston possibles, on peut sélectionner le piston adapté à chacune des applications, de sorte que la vitesse d'extension v, respectivement la force requise pour la compression du ressort à gaz, permette une utilisation confortable. La vitesse d'extension peut être choisie dans une gamme allant de 0,01 à 0,8 m/s.

Pour un déplacement pratiquement non amorti, on monte l'ensemble piston sans la bague d'étanchéité. Dans cette version, le vérin Lift-O-Mat est utilisé essentiellement comme équilibrage de poids, par exemple sur table à dessin. La vitesse d'extension de cette variante est nettement plus grande que celle du ressort amorti. Une fonction de réglage confortable demande donc un ajustement spécifique du ressort à gaz à chacune des utilisations. En plus de l'amortissement du déplacement, l'ensemble piston se charge des fonctions «limitation de la course du vérin dans le sens extension» et «guidage de la tige dans le tube».

Figure 3

Canal d'écoulement dans l'ensemble piston, ressort amorti à l'extension

Disposition du trou puor canal d'écoulement olong/•court

Coupe A-A
Rondelle-étoille

Bague
d'étanchéité

Coupe B-B
Piston

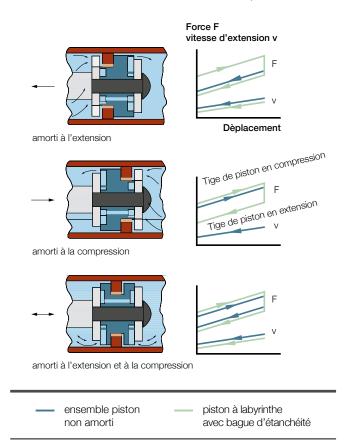

Tube
de pression

Figure 4

Percage

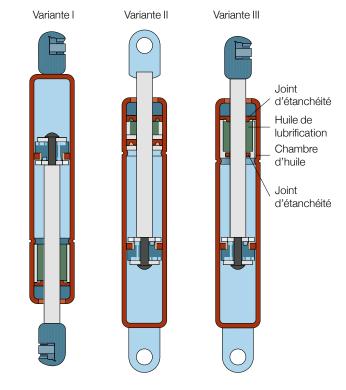
Fonctionnement de différents ensembles de piston

Section C-C

Elément d'étanchéité et de guidage du Lift-O-Mat

Le guidage sert de deuxième palier à la tige, l'étanchéité sépare le gaz en surpression de l'environnement.

A la **figure 5**, on représente trois variantes de ressort à gaz, qui se distinguent uniquement par la disposition de l'élément d'étanchéité et de guidage.


Alors que la variante I est montée de préférence en position verticale, avec la tige orientée vers le bas – ce qui assure un graissage permanent de l'étanchéité par le lubrifiant qui s'y accumule – la variante II, comportant la double étanchéité STABILUS, peut être utilisée dans n'importe quelle position. Même si l'on monte l'appareil avec la tige vers le haut, l'huile enfermée entre les joints assure la lubrification des deux joints d'étanchéité. De plus, le second joint augmente la durée de vie du ressort, de sorte que ce type est utilisé pour des applications qui doivent supporter un grand nombre de cycles.

La variante III contient la chambre d'huile STABILUS. Cette variante convient pour des applications dans lesquelles le ressort bascule au cours de son utilisation. Lorsque le ressort à gaz est orienté tige de piston vers le bas, le réservoir d'huile se remplit grâce à l'huile s'écoulant le long de la gorge circulaire, libre au niveau de l'enveloppe de la chambre. Lorsqu'ensuite, le ressort bascule, de sorte que la tige de piston pointe vers le haut, il reste suffisamment d'huile dans le réservoir pour lubrifier l'étanchéité.

Tous les systèmes de lubrification peuvent être assortis sur demande d'une «chambre feutre». Dans ce cas, un joint feutre imprégné d'une graisse spéciale assure une lubrification supplémentaire de la tige de piston sur toute sa course. Ce dispositif réduit plus encore les forces de frottement et de gommage, pour garantir un fonctionnement optimal du ressort à gaz, même dans des applications sensibles. Les dépôts de poussière et de polluants sur la tige de piston peuvent réduire la durée de vie des ressorts à gaz. Dans des conditions d'environnement qui sont loin d'être idéales, un tube protecteur assure une meilleure protection contre polluants, poussière, humidité ou choc mécanique éventuel sur la tige de piston.

Il convient alors d'opter pour une orientation de montage qui évite que le tube protecteur se remplisse de poussière ou de polluants. Pour améliorer la sécurité de fonctionnement et renforcer la résistance à la corrosion, des capots protecteurs plastique sont prévus sur la zone de bordage et de sertissage du ressort à gaz.

Figure 5
Lift-O-Mat, éléments d'étanchéité et de guidage

Tige de piston Sens de montage orientée vers le bas indifférent

Le vérin bascule en cours d'utilisation

Fixations Lift-O-Mat

La multiplicité des variantes de fixation permet le montage simple et rapide du ressort à gaz. La **figure 6** donne un extrait des fixations STABILUS standard pour ressort à gaz Lift-O-Mat, qui peuvent être montées côté tube et côté tige. Pour plus de détails, consulter le catalogue des ressorts à gaz STABILUS.

Figure 6

Fixations standard Lift-O-Mat

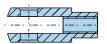
Cage à rotule, rotules

- en matière plastique ou en métal, selon les normes DIN
- en combinaison avec des rotules

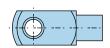
- dans différentes dimensions
- pour différents diamètres de rotules

Oeils articulés, chapes

- en matière plastique ou en métal



- dans différentes dimensions


- avec différents diamètres de trou ou d'ajustement
- soudés, vissés ou sertis

Extrémité côté tige de piston

Extrémité côté tube de pression

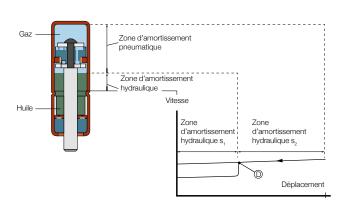
1.2.2 Lift-O-Mat: ressorts à gaz à amortissement hydraulique et dynamique

Afin de permettre un arrêt confortable de l'équipement en position finale, un amortissement en fin de course est prévu dans la plupart des cas. Les figures 7a et 7b montrent deux variantes de ressorts à gaz Lift-O-Mat qui freinent le mouvement de la tige de piston parvenant dans la zone de fin de course.

Lift-O-Mat à amortissement hydraulique

Le Lift-O-Mat à amortissement hydraulique utilise à cet effet la résistance hydrodynamique de la buse de piston, laquelle est plus faible dans le gaz (figure 7a) (plage d'amortissement pneumatique s_a) que dans l'huile (\hookrightarrow figure 7a) (plage d'amortissement hydraulique s,). Lorsque le ressort est monté verticalement, tige vers le bas, l'huile se concentre au niveau de l'élément d'étanchéité et de guidage. Dès que le piston plonge dans l'huile, au moment de l'extension de la tige, celle-ci se déplace à une vitesse nettement plus faible. L'effet de freinage peut être adapté de manière optimale à l'application, par la combinaison de différentes huiles et de pistons à labyrinthe. On peut sélectionner la vitesse de sortie de la tige dans une plage comprise entre 0,01 et 0,35 m/s. La longueur d'amortissement hydraulique dépend de la quantité d'huile disponible dans l'appareil.

Lift-O-Mat à amortissement dynamique


Contrairement à l'amortissement hydraulique, le Lift-O-Mat à amortissement dynamique permet le montage dans n'importe quelle position. Le réglage de la vitesse d'extension se fait par l'aménagement d'une rainure longitudinale à l'intérieur du tube. Dans ce cas, le piston n'est pas pourvu d'un canal d'écoulement, de sorte que lors du déplacement de la tige, le gaz passe par la rainure. En faisant varier la géométrie de cette rainure, on peut régler la vitesse de mouvement de la tige sur toute sa course et ainsi, l'adapter de manière idéale à chacune des applications.

La figure 7b donne un exemple de l'évolution de la vitesse d'extension d'un ressort à gaz, vitesse déterminée par une rainure dont la section diminue à mesure qu'on approche de la position de fin de course. Le déplacement se fait à vitesse d'extension diminuant de façon continue, jusqu'au quasi arrêt de la tige.

Figure 7a

Figure 7b

Lift-O-Mat à amortissement hydraulique

Rainure à profil constant Profile de rainure en diminution Zone d'amortissement pneumatique, s, Vitesse Section du tube 0 Déplacement Ressort à gaz sorti Ressort à gaz rétracté

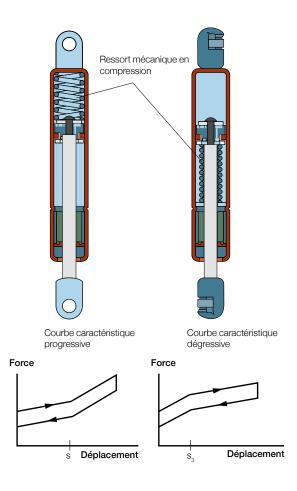
Lift-O-Mat à amortissement dynamique

1.2.3 Lift-O-Mat à courbe caractéristique progressive et dégressive : courbes caractéristiques

Certaines applications nécessitent une force particulièrement ajustée, fonction de la course. Souvent ce sont les positions finales de l'application, qui demandent des forces spécialement grandes ou petites, par rapport à la plage principale de déplacement. Le ressort Lift-O-Mat convient bien à ce type d'applications, car sa courbe caractéristique peut être ajustée aux exigences par simple ajout de ressorts mécaniques.

Courbe caractéristique progressive

Un ressort mécanique disposé entre le piston et le fond du tube entraîne une courbe caractéristique progressive, telle que représentée à la **figure 8**. Le ressort à gaz est assisté par la force d'un ressort mécanique. Ainsi, la force s'accroît lorsque le piston est rentré. Cette solution convient lorsqu'une force d'extension particulièrement élevée est nécessaire en fin de course.


Courbe caractéristique dégressive

Si l'on dispose un ressort mécanique sur la tige de piston, entre le piston et l'étanchéité, la force du ressort à gaz diminue de l'équivalent de la force du ressort et on obtient une courbe caractéristique dégressive. La force en extension est alors nettement plus faible que celle du vérin standard.

La courbe caractéristique des deux variantes est réglable par le choix de la longueur du ressort mécanique (c'est elle qui détermine le point d'inflexion s3 de la courbe) et par la force du ressort mécanique (qui détermine la pente de la courbe au niveau du point d'inflexion s3). Souvent, on place ici, à la place du ressort mécanique, une butée en caoutchouc, afin d'obtenir en plus de l'effet de ressort du caoutchouc, un amortissement en butée lors de l'extension et de la compression de la tige. La combinaison des deux variantes est également possible.

Figure 8

Lift-O-Mat à courbe caractéristique progressive et dégressive

1.2.4 Lift-O-Mat à blocage de fin de course

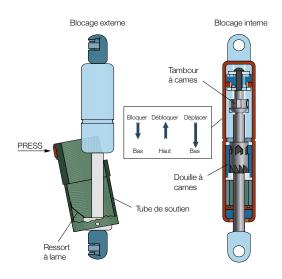
Un dispositif de blocage est nécessaire lorsque le ressort à gaz est exposé à des forces qui dépassent sa force d'extension ou lorsque des exigences légales nécessitent un dispositif de sécurité empêchant un déplacement involontaire. Avec l'aide d'éléments de blocage mécaniques intégrés figure 9, le ressort Lift-O-Mat peut assurer le verrouillage de l'application. Un exemple type d'utilisation est celui des boutiques ambulantes, dans lesquelles le Lift-O-Mat sert à la fois à l'ouverture des volets et au blocage de ces volets pour s'opposer à leur fermeture sous l'effet du vent ou de la neige. Si l'on utilise plus d'un ressort pour une telle application, il suffit le plus souvent qu'un seul de ces ressorts soit pourvu d'un élément de blocage mécanique.

Avantages d'un blocage mécanique sur Lift-O-Mat :

- verrouillage et déverrouillage directement sur l'élément de réglage,
- sécurité supplémentaire contre une fermeture involontaire,
- résistance aux forces additionnelles telles que les charges du vent et de la neige etc.

STABILUS propose deux variantes de ressorts à blocage mécanique, pour des forces de blocage jusqu'à 3 000 N maximum.

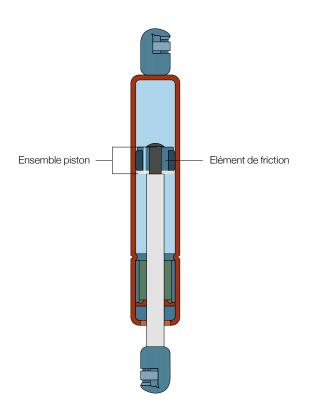
Blocage mécanique externe


A l'extrémité de la tige de piston est fixé un tube de soutien qui bascule vers l'extérieur lors de l'extension du ressort, après qu'il ait atteint sa position finale. Si la charge extérieure excède la force du ressort à gaz, le tube s'appuie sur la partie frontale du tube de pression et empêche ainsi la compression de la tige (figure 9). Pour déverrouiller le blocage, le tube de soutien doit être rebasculé, ce qui s'effectue en pressant le bouton marqué «PRESS». En plus de la fonction de blocage, le tube de soutien protège efficacement la tige de piston du salissement.

Blocage mécanique interne (Lift-O-Mat PTL)

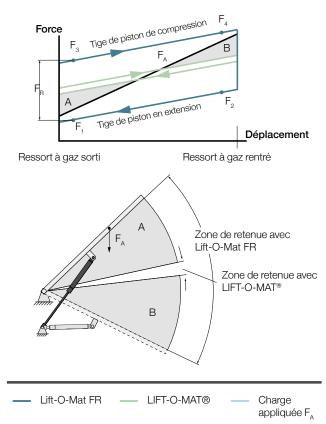
De par sa conception, ce blocage ressemble au mécanisme d'un stylo bille. Le blocage est logé dans le tube de pression (L) figure 9). Le blocage mécanique entre en action lorsqu'à partir de sa position finale, la tige est légèrement rétractée. Afin que le blocage ne se déverrouille pas de lui-même, la charge sur la tige doit être supérieure à la force d'extension du ressort. Pour cette raison, la force de ce ressort à gaz Lift-O-Mat est plus faible que la charge externe résultant de l'utilisation. Pour enlever le blocage, la tige doit être déplacée légèrement dans le sens de l'extension, comme indiqué sur l'étiquette collée sur le ressort. Comme la charge extérieure est supérieure à la force d'extension. le Lift-O-Mat rentre ensuite, en douceur. Avantage de cette variante par rapport à un blocage extérieur : le déverrouillage du ressort à gaz et le déplacement de l'application peuvent se faire simultanément, d'une main.

Figure 9


1.2.5 Lift-O-Mat à frottement (Lift-O-Mat FR)

Certaines applications demandent, outre l'équilibrage, un positionnement sur toute la plage de déplacement. Le ressort à gaz Lift-O-Mat FR satisfait les deux exigences de la même manière. Il se différencie du Lift-O-Mat FR par un élément de friction intégré à l'ensemble piston (figure 10).

L'élément de friction augmente la force nécessaire pour rentrer la tige de piston et réduit en même temps la force d'extension du ressort à gaz. La courbe caractéristique du Lift-O-Mat FR est ainsi nettement plus étendue que celle du ressort à gaz Lift-O-Mat (L) figure 11). Si la courbe caractéristique de la charge appliquée FA est contenue dans la courbe caractéristique du Lift -O-Mat FR, l'application peut être positionnée sur toute la distance de réglage. Du fait de la «force de retenue» relativement faible, l'application peut être ouverte et fermée par un faible effort de la main. Si nous avions, pour la charge représentée, utilisé un ressort Lift-O-Mat, nous aurions une «zone de retenue» de l'application plus limitée, par rapport au Lift-O-Mat FR. Dans les zones A et B, Lift-O-Mat se charge de l'ouverture et de la fermeture du volet, alors que dans ces mêmes zones, Lift-O-Mat FR permet un positionnement de l'ouvrant à tout niveau.


Figure 10

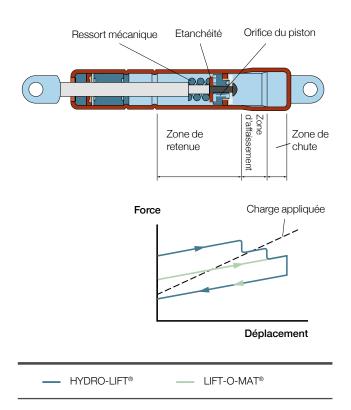
Structure Lift-O-Mat FR

Lift-O-Mat FR, courbe caractéristique et zone de retenue de l'application

Figure 11

1.2.6 Ressort à gaz STABILUS Hydro-Lift

Comme le Lift-O-Mat FR, l'Hydro-Lift sert en principe à l'équilibrage et au positionnement sans palier de l'application. Toutefois, le piston de l'Hydro-Lift est doté à cet effet d'un clapet disposé à l'arrière du piston. Ce clapet empêche le passage du gaz, c'est-à-dire la compression de la tige, jusqu'à ce que l'étanchéité précontrainte ait libéré l'orifice du piston. La précontrainte par ressort de l'étanchéité du piston fait que la force nécessaire pour rentrer la tige piston est plus grande que celle du ressort Hydro-Lift, comme le montre la figure 12. La force d'extension, respectivement la plage de la courbe caractéristique, peut être ajustée de manière optimale par le choix du ressort mécanique du clapet.


La force d'extension du ressort Hydro-Lift est ajustée de telle sorte que sur l'application, la tige ne sorte qu'avec l'assistance d'une force (par exemple l'effort de la main pour ouvrir un hayon).

Dès que la charge extérieure de l'application est plus faible que la force de compression de Hydro-Lift, le hayon reste en position, sur toute la «zone de retenue» (jugie 11).

Selon la disposition du ressort Hydro-Lift, la fonction de maintien peut être effective sur l'ensemble de la zone de déplacement (comme pour le Lift-O-Mat FR) ou bien sur une ou plusieurs zones partielles de l'application. La **figure 12**, on notera deux autres zones fonctionnelles, en plus de la «zone d'équilibrage». La «zone d'affaissement» est obtenue par une ou plusieurs rainures dans le tube de pression, servant de passage sur le piston et annulant ainsi la fonction du clapet. En élargissant la section du tube de pression, on crée une «zone de chute». Lorsqu'au moment de la compression, le piston atteint la «zone d'affaissement», la force du ressort, l'effort de la main, diminue à la fermeture du hayon. Parvenu dans la «zone de chute», le hayon tombe de lui-même dans la serrure.

Figure 12

Hydro-Lift avec « zones de retenue, d'affaissement et de chute »

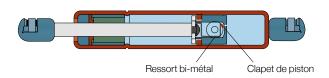
1.2.7 Ressort à gaz STABILUS Hydro-Lift-T

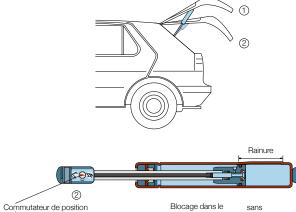
Les forces d'ouverture et de fermeture d'un volet par des ressorts à gaz sont affectées par la température ambiante, du fait des lois physiques. À basse température, l'azote liquide se contracte et la force du ressort diminue. Avec des températures élevées en revanche, le liquide de remplissage s'expanse et la force du ressort augmente. Le ressort Hydro-Lift-T a été conçu pour réduire autant que possible l'influence de la température sur les forces s'exerçant sur un volet. Il est équipé d'un clapet de commande bimétal. Le clapet est ouvert lorsque la température est supérieure à +10 °C. À des températures inférieures à +10 °C, le clapet se ferme et augmente la force de retenue. Si l'on obtient de bonnes forces de retenue à des températures allant jusqu'à -30 °C, cette fonction s'accompagne d'une plus faible force d'extension

Cette moindre force soulage les points d'accouplement du ressort à gaz, ce qui facilite la fermeture (\hookrightarrow figure 13).

1.2.8 Ressort à gaz STABILUS Kombi-Lift

La particularité du Kombi-Lift a trait à ses deux positions d'extension pré-réglables, ce qui peut être particulièrement utile dans des applications telles que des hayons de véhicules hauts (vans), pour les empêcher de cogner au toit ou à la porte du garage. Les personnes plus petites peuvent aussi limiter l'angle d'ouverture du hayon, pour le fermer plus facilement. Pour ce faire, le Kombi-Lift est équipé d'un commutateur sur la tige de piston, qui ouvre ou ferme le clapet du piston (L) figure 14). Le tube de pression est équipé d'une rainure qui fait office de passage dans une certaine gamme. Ainsi, le Kombi-Lift est un ressort à gaz en partie blocable et en partie non blocable, comme son nom l'indique.


Si le clapet reste ouvert (position du commutateur), la tige de piston s'étend totalement. Si le clapet est fermé (position du commutateur), la tige ne subit qu'une extension partielle, à savoir dans la zone de la rainure. Pour pouvoir l'étendre plus, il suffit de modifier la position du commutateur qui ouvre le clapet. Cette conception spéciale du piston permet une compression de la tige sans blocage, quelle que soit la position préréglée.


Figure 14

Structure et exemple d'application du Kombi-Lift

Figure 13

Structure de l'Hydro-Lift-T

1.2.9 Ressort à gaz STABILUS Inter-Stop

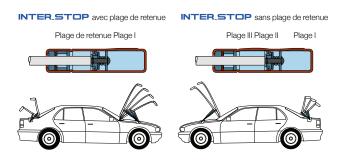
Le ressort à gaz Inter-Stop permet de limiter l'angle d'ouverture des volets, ce qui est utile pour les hayons arrière dans des garages bas de plafond, ou pour des capots présentant une position d'ouverture normale et une position de service. Pour ce faire, on combine la fonction Lift-O-Mat avec amortissement hydraulique et la fonction de retenue d'un Hydro-Lift. À la différence de l'Hydro-Lift, la force de retenue de l'Inter-Stop agit dans le sens d'extension. Deux systèmes sont proposés, en fonction de l'application.

Inter-Stop sans plage de retenue

Dans la première partie de la course (plage I), l'Inter-Stop fonctionne comme un ressort à gaz avec amortissement dynamique. Le dispositif s'arrête doucement au point de retenue. Avec une aide manuelle dans le sens d'ouverture, le clapet s'ouvre, le gaz passe dans les zones de fonction et le point de retenue est surmonté. La force de retenue doit être choisie pour assurer la fonction d'arrêt à une température de +80 °C. Dans la seconde partie de la course (plage III), le dispositif agit comme un ressort à gaz normal et le mouvement est amorti à l'approche de la position finale. La fermeture d'un volet avec l'Inter-Stop est identique à celle utilisant le Lift-O-Mat.

Inter-Stop avec plage de retenue

Dans la première partie de la course, le dispositif agit tel que décrit précédemment. Dans la plage de retenue, qui correspond à la dernière partie de la course, le clapet du piston est ouvert avec un effort manuel supplémentaire, ce qui permet un positionnement continu du volet jusqu'à la butée de fin de course.


1.2.10 Ressort à gaz STABILUS Elektro-Lift

Le ressort Elektro-Lift possède les mêmes caractéristiques techniques que le Lift-O-Mat standard. Equipé d'un contact frotteur sur le piston, avec des raccordements plastiques et une gaine de protection (igure 16), Elektro-Lift peut conduire un courant électrique de 12 V jusqu'à 25 A, via des cosses plates disposées à l'extrémité de la tige et du tube. On peut dès lors se passer des raccordements par câble, et donc éliminer les risques d'arrachement, citons pour exemples l'alimentation de l'essuie-glace arrière ou le dégivrage de la vitre arrière. Là ou le ressort Elektro-Lift est destiné à ne conduire que la masse, des raccords métalliques seront utilisés à la place des raccords plastiques.

Le ressort Elektro-Lift peut également se charger d'une fonction de commutation et remplacer ainsi, dans l'application, un commutateur supplémentaire. Dans ce cas, un chapeau plastique est fixé à l'extrémité du tube de pression. Ce chapeau comporte le contact frotteur. Dès qu'à l'extension, le contact touche la tige, le circuit se ferme. Afin de pouvoir ajuster le point de commutation, cette variante peut être fournie avec un contacteur réglable, par exemple pour l'éclairage du coffre à bagages.

Figure 15

Les différentes fonctions d'ouverture de l'Inter-Stop

Variantes du ressort à gaz Elektro-Lift

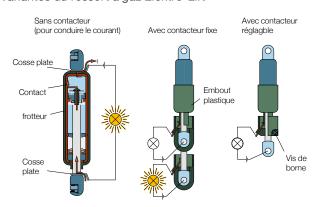


Figure 16

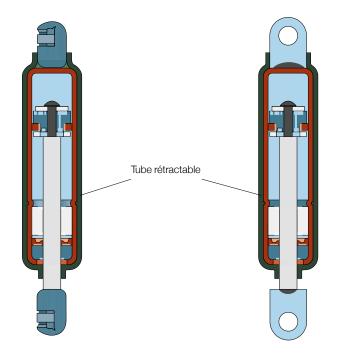
1.2.11 Conception légère : ressorts à gaz à chambre de pression en aluminium

Pour répondre aux exigences de réduction de la masse, STABILUS propose également des ressorts à gaz avec tubes de pression en aluminium. En fonction des dimensions du tube de pression, il est possible d'obtenir une réduction de masse allant jusqu'à 30 %, en comparaison avec un ressort à gaz conventionnel avec tube de pression en acier. La surface en métal poli brillant des ressorts à gaz avec tube aluminium leur confère un design high-tech très attrayant.

1.2.12 Ressorts à gaz à tube rétractable

Comme décrit à la **figure 17**, le ressort à gaz doit de préférence être monté tige de piston vers le bas pour assurer une lubrification permanente du joint. En cas de montage en biais, l'inclinaison maximum dépend du niveau de remplissage en huile. Précisez dans ce cas l'orientation de montage du ressort à gaz dans votre application. Si le ressort pivote par rapport à l'horizontale lors du déplacement, l'orientation de montage dépend de la position finale de l'application la plus fréquente.

1.2.13 Indications de montage et d'utilisation


Le ressort devrait de préférence être monté verticalement, avec la tige dirigée vers le bas, afin d'assurer en permanence la lubrification de l'étanchéité. Lors d'un montage en biais, l'inclinaison maximale dépend de la quantité d'huile présente dans le ressort. Dans ce cas, l'utilisateur devra préciser la position du ressort dans l'application envisagée. Si lors du déplacement, le ressort bascule de part et d'autre de l'horizontale, la position au montage du ressort à gaz dépendra de la position finale la plus fréquente dans l'application. Dans un tel cas, le ressort devrait être pourvu d'un système de chambre d'huile. Si sur l'application, la tige de piston est orientée en permanence vers le haut, il faudra utiliser un ressort à gaz STABILUS avec un système à double étanchéité.

Les forces radiales peuvent provoquer l'usure prématurée du ressort à gaz. Il importe donc que le montage et l'utilisation du ressort soient exempts de forces radiales. En cas de mouvements dans plusieurs sens, on peut par exemple envisager des fixations par rotules (figure 6), afin d'éviter des déformations.

La conception du ressort à gaz standard est telle qu'il puisse être mis en œuvre à des températures environnantes de -30 °C à +80 °C. On peut toutefois admettre un échauffement passager (1 heure maximum) à +110 °C. Le ressort à gaz ne nécessite aucune maintenance. Il faut veiller lors du montage et de l'utilisation à la protection du ressort et surtout de la tige de piston (éliminer les salissures qui pourraient endommager l'appareil). Pour la mise au rebut du ressort à gaz, nous avons établi une prescription de neutralisation, qui est à la disposition de notre clientèle sur le site internet www.STABILUS.de

Figure 17

Ressorts à gaz à tube rétractable

1.3. Ressorts à gaz pour l'équilibrage avec blocage

Les ressorts à gaz blocables ont, en plus des caractéristiques de fonctionnement du ressort Lift-O-Mat telles que le déplacement et l'amortissement, la propriété du blocage en continu. Cette caractéristique est obtenue grâce à un système intégré de clapet miniaturisé, permettant de conserver la compacité du ressort.

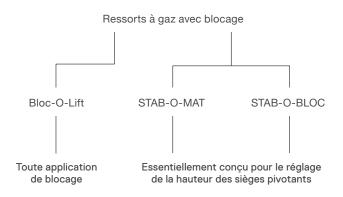
On distingue deux types de ressorts à gaz blocables :

- · le ressort blocable à clapet dans le piston, Bloc-O-Lift,
- le ressort blocable à clapet dans l'extrémité du tube de pression (système de double tube), Stab-O-Bloc/Stab-O-Mat.

La figure 1 fournit une vue d'ensemble, ainsi que l'éventail des forces et des dimensions existantes.

1.3.1 Ressort à gaz STABILUS Bloc-O-Lift

«Bloquer» et «lever», sont les principales caractéristiques du ressort à gaz Bloc-O-Lift expliquées dans le **chapitre 1**. La structure du ressort Bloc-O-Lift est détaillée à la **figure 2**. Le piston du ressort à gaz Bloc-O-Lift comporte un clapet qui permet de séparer de manière étanche les chambres de pression de part et d'autre du piston. Lorsqu'en agissant sur la tige de commande, le clapet s'ouvre, le Bloc-O-Lift se comporte comme un Lift-O-Mat.


La tige de piston peut alors sortir, amortie par la force du ressort, ou rentrer, contre la force. Dès que la tige de commande est libérée de l'extérieur, le pointeau du clapet se ferme sous l'effet de la pression du gaz. Le piston, respectivement la tige de piston du ressort Bloc-O-Lift est alors bloquée, car la circulation du gaz entre les chambres de pression 1 et 2 est interrompue. De cette manière, le ressort Bloc-O-Lift peut se bloquer à n'importe quel endroit de sa course, donc en continu.

D'autres critères des ressorts à gaz à blocage, qui doivent être adaptés à une application donnée, sont en plus de la force d'extension :

- · la force du ressort à gaz,
- · les caractéristiques de force,
- · l'amortissement,
- · le type de blocage (en souplesse ou rigide).

Figure 1

Vue d'ensemble de la gamme des ressorts à gaz STABILUS avec blocage

1.3.2 Clapet de réglage et amortissement

La courbe caractéristique du Bloc-O-Lift de la **figure 2** se divise en deux parties : la courbe de force du clapet et la courbe caractéristique. L'importance de cette force étant fonction de chaque utilisation. La force de déclenchement dépend du diamètre de la tige de piston, respectivement de la pression de remplissage du ressort à gaz. Elle est d'environ 20 % de la force d'extension pour les appareils à tige de diamètre 10 mm, d'environ 30 % pour les appareils à tige de diamètre 8 mm. Selon le type de système de clapet, les déplacements du pointeau sont de 1 ou de 2,5 mm.

La vitesse d'extension de la tige de piston et l'amortissement du mouvement s'ajustent dans le cas de Bloc-O-Lift par le diamètre de l'orifice de buse **figure 3**.

Le ressort Bloc-O-Lift représenté à la figure 2 se monte avec la tige de piston orientée vers le bas, afin que le lubrifiant contenu dans l'appareil puisse se collecter au niveau de l'étanchéité. Si le ressort est doté d'un système à double étanchéité, du type présenté à la figure 3, il peut être utilisé dans n'importe quelle position.

1.3.3 Systèmes de clapets des Bloc-O-Lift

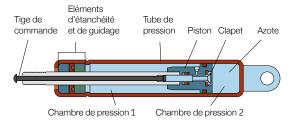
Il existe deux types de clapets : le clapet plat et le clapet cônique.

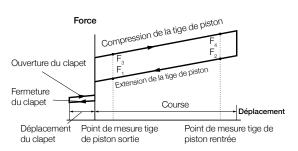
Les deux types sont illustrés à la figure 3.

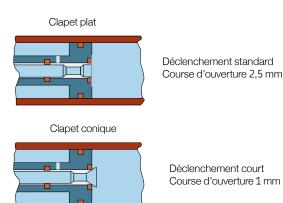
Clapet plat

Dans les appareils à déclenchement standard, on utilise le clapet plat. Le déplacement pour l'ouverture du clapet est ici de 2,5 mm au maximum. Ce type résiste à la compression et à la traction, c'est-à-dire que même en cas d'importantes forces externes de compression ou de traction résultant de l'application, le clapet reste fermé.

Clapet conique


L'avantage de cette variante réside dans le déplacement extrêmement court (1 mm maxi) pour l'ouverture du clapet, qui répond immédiatement et déverrouille ou bloque le ressort à gaz. Le clapet conique résiste à la pression, comme le clapet plat. En cas de forte sollicitation en traction, le clapet s'ouvre, car la surface soumise à pression au niveau du cône s'agrandit, par rapport à la surface de la tige. La force maximale de blocage en traction dépend de la force d'extension du ressort à gaz. Les valeurs figurent dans le catalogue des ressorts à gaz STABILUS ainsi que sur les plans de chaque type de ressort.


Figure 2

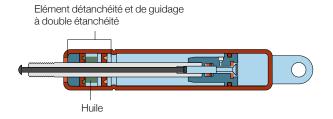

Figure 3

Bloc-O-Lift - Déclenchement standard et court

Bloc-O-Lift, structure, fonction du clapet et courbe caractéristique

1.3.4 Caractéristiques de blocage des ressorts à gaz Bloc-O-Lift

Vous pouvez opter pour des ressorts à gaz à blocage rigide ou élastique : le choix est fonction de votre application. Vous obtenez ces caractéristiques par la bonne structure des ressorts Bloc-O-Lift. En optant pour un blocage rigide, vous choisissez aussi le sens de blocage. Vous pouvez, de plus, effectuer une distinction entre types dépendants ou indépendants de la position.


Bloc-O-Lift à blocage élastique

Les ressorts à gaz à blocage élastique sont utilisés lorsqu'un blocage en souplesse est recherché. On peut ainsi éviter, dans certaines applications, par exemple les à-coups et les sollicitations par impulsions. La **figure 4** présente le ressort Bloc-O-Lift à blocage élastique. Du fait de la compressibilité du gaz, on a un effet de ressort même lorsque le clapet est fermé. La tige de piston rentre d'abord facilement puis, après quelques millimètres, difficilement car elle doit s'opposer à une pression de gaz croissante. Cet effet physique peut se comparer au fonctionnement d'une pompe à air, lorsque l'on obture le trou de sortie. Toutefois, du fait de la pression de remplissage du ressort à gaz, la course du piston, clapet fermé, est beaucoup plus petite que celle de la pompe à air.

Le niveau de compression sous une charge extrême dépend de la force d'extension du ressort et de la position de blocage du piston dans le tube. Si, par exemple, le piston se trouve à proximité du fond du tube, on aura un petit effet de ressort dans le sens compression et un grand effet de ressort dans le sens de l'extension. Si le piston est bloqué au centre, le niveau de compression est identique dans les deux sens.

Figure 4

Bloc-O-Lift à blocage élastique, avec double étanchéité

Bloc-O-Lift à blocage rigide

Dans de nombreuses applications (réglage des colonnes de pilotage ou des dossiers de siège de voiture par exemple), un blocage rigide est impératif. Vous pouvez en principe obtenir un blocage rigide en remplissant le tube de pression d'huile qui ne peut être comprimée. Cependant, comme le volume de la tige de piston à rétracter doit être déplacé, vous ne pouvez pas effectuer un remplissage complet du ressort à gaz, et il doit rester un certain volume de gaz.

Quand le ressort à gaz Bloc-O-Lift est installé tige de piston vers le bas, l'huile se concentre au-dessus du piston par gravité. Si la tige de piston ne peut être montée dans ce sens, un piston séparateur doit assurer le positionnement fonctionnel de l'huile. Les deux types alors obtenus sont présentés plus avant par la suite.

Bloc-O-Lift à blocage rigide toutes positions

Si l'application doit rester bloquée, même en présence d'importantes forces externes, on aura recours à des ressorts à gaz Bloc-O-Lift à blocage rigide. Dans ce cas, le ressort Bloc-O-Lift est équipé d'un piston séparateur, qui sépare la chambre renfermant le gaz de celle contenant l'huile. Alors que le gaz compense le volume correspondant à la compression de la tige ainsi que l'expansion de l'huile sous l'effet de la chaleur, la chambre d'huile permet un blocage rigide. Le piston séparateur peut, comme le montre la figure 5, être disposé sur la tige ou entre le piston et le fond du tube de pression.

Dans les deux cas, l'espace de travail du piston est complètement rempli d'huile. Comme l'huile est incompressible, la variante l est rigide, clapet fermé, dans le sens compression, alors que la variante ll est rigide dans le sens extension. La force de blocage maximale de l'huile est fonction de la force d'extension du ressort ainsi que de la résistance de l'appareil, en tenant compte de tous les facteurs de sécurité nécessaires.

Si, le clapet étant fermé, le piston est soumis à une charge en direction du volume de gaz (variante I dans le sens extension, variante II dans le sens compression), Bloc-O-Lift est bloqué rigide dans ce sens de déplacement, jusqu'à la limite de compressibilité du gaz correspondante. Des forces externes plus importantes provoqueront la compression ou l'extension de la tige, car alors le piston séparateur est déplacé par la charge externe et comprime le volume de gaz. La force de blocage du gaz varie en même temps que la force d'extension $\mathbf{F}_{\mathbf{1}}$, c'est-à-dire en fonction de la pression de remplissage du ressort à gaz.

Le rapport force de blocage du gaz/ force d'extension correspond au rapport des surfaces de section piston séparateur/tige de piston. Pour la variante I, ce rapport est d'environ 4,5, pour la variante II, d'environ 5,5. Les deux variantes de ressort à gaz peuvent être utilisées dans n'importe quelle position de montage. Alors que la variante II peut être montée telle quelle, la variante I doit dans ce cas être équipée du système STABILUS à double étanchéité, comme le montre également la **figure 5**.

Bloc-O-Lift, à blocage rigide selon la position

La fonction des variantes décrites à la figure 5 peut s'obtenir à meilleur coût, lorsque le ressort Bloc-O-Lift peut être monté de la façon illustrée à la figure 6. On peut alors renoncer à certains composants supplémentaires (par exemple le piston séparateur). Si la tige est dirigée vers le bas, l'huile contenue dans l'appareil se concentre sous le piston. Le ressort est alors blocable rigide dans le sens extension, tant que le piston est couvert d'huile.

Si la tige est orientée vers le haut, le vérin peut se bloquer rigide dans le sens compression. Pour la lubrification du joint de la tige de piston, ce ressort à gaz est doté en plus d'un système d'étanchéité double. En cas de charge opposée au Bloc-O-Lift, la tige rentre lorsque la charge externe dépasse la force de blocage du gaz (figure 7). Les forces de blocage de l'huile et du gaz de cette variante correspondent aux appareils à position de montage quelconque. Les deux variantes peuvent aussi être mises en œuvre grâce à un montage légèrement incliné. Toutefois, la plage de déplacement, dans laquelle le piston est recouvert par l'huile, est plus petite que dans le cas du montage vertical du ressort à gaz. Bloc-O-Lift ne peut alors être bloqué rigide que dans cette partie de course réduite.

Figure 5

Bloc-O-Lift, bloqué rigide toutes positions en sens compression ou extension

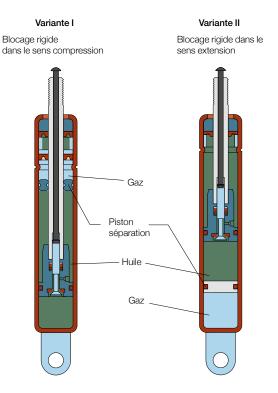
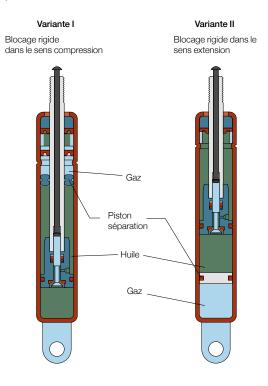
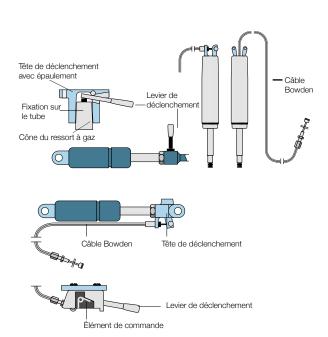



Figure 6

Bloc-O-Lift, bloqué rigide selon la position, en sens compression ou extension

1.3.5 Indications de montage et d'utilisation


Les indications données au **voir 1.2.4** pour Lift-O-Mat valent également pour le ressort à gaz Bloc-O-Lift. Du fait des différentes fonctions de blocage, la position de montage de chaque type a déjà été évoquée dans le chapitre précédent.

Si des ressorts à gaz à blocage (voir 1.3) doivent être exposés à des températures environnantes changeantes, il faut veiller à ce que, lors de l'utilisation, le ressort puisse bouger d'un côté, même à l'état bloqué, pour tenir compte de la dilatation de l'huile à la chaleur. La sollicitation au-delà de la force de blocage peut provoquer la destruction ou tout au moins le dysfonctionnement de l'appareil.

Le ressort Bloc-O-Lift est bloqué en toute sécurité lorsque le clapet étant fermé, il existe un faible jeu entre le système de commande extérieur et le poussoir du clapet. Pour déverrouiller l'appareil, le poussoir doit pénétrer de la distance indiquée sur le dessin du ressort. La course maximale du clapet dépend de l'appareil. Elle figure également sur le dessin du ressort à gaz.

Figure 7

Têtes de déclenchement et éléments de commande STABILUS

1.3.6 Systèmes de déclenchements STABILUS pour ressorts à gaz blocables

Le système de déclenchement comprend l'élément de commande, par exemple sur la coque d'assise, la tête de déclenchement sur le ressort ainsi qu'en cas de commande à distance, un câble Bowden comme moyen de transmission entre l'élément de commande et la tête de déclenchement. En général, le choix de l'élément de commande dépend de la place dont on dispose et des souhaits du client concernant la forme et le fonctionnement. Les éléments de commande sont réalisés dans la couleur de la coque d'assise et fixés en position facile à atteindre, sur la coque d'assise.

La tête de déclenchement (ou le poussoir de clapet) du ressort

Bloc-O-Lift peut être actionné par levier de commande ou par câble Bowden. Les deux variantes de tête de déclenchement sont vissées sur la tige de piston et freinées à l'aide d'un écrou. Elles comportent également le raccordement à l'application côté tige de piston, ce qui permet de conserver la compacité de l'appareil et la facilité de montage du ressort à gaz. Le montage du câble Bowden se fait en enfichage latéral du manchon sur le bras en porte-à-faux de la tête de déclenchement.

La conception de la tête de déclenchement des ressorts

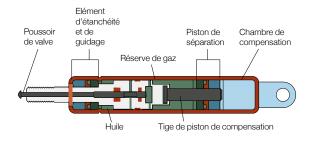
Stab-O-Bloc/Stab-O-Mat permet de loger la tête de déclenchement dans le cône du tube. Cette tête peut à tout moment être démontée, en agissant sur les attaches de fixation. Les longueurs de levier et de câble Bowden dépendent de chaque application. Les cotes et les particularités de montage des systèmes de déclenchement se trouvent dans les normes STABILUS.

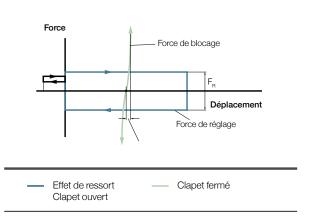
1.4. Ressorts à gaz à blocage STABILUS Hydro-Bloc sans force d'extension

Figure 1

Le réglage amorti et le blocage en continu sont les caractéristiques fonctionnelles du ressort Hydro-Bloc. Ce type d'appareil ne possède aucune force d'extension et convient donc pour des applications qui ne demandent pas d'équilibrage mais de l'amortissement et un blocage en continu. On trouve des exemples d'utilisation dans l'automobile sous forme d'élément de réglage en hauteur de la colonne de direction, dans les meubles sous forme d'élément de réglage hauteur du dossier et de réglage de l'inclinaison de l'assise. La figure 1 montre la structure du ressort Hydro-Bloc.

Le ressort Hydro-Bloc se différencie du ressort Bloc-O-Lift par sa structure interne. Le piston de cet appareil est conçu de telle sorte qu'il puisse, outre la tige de piston menant à l'extérieur, recevoir une tige de piston de compensation, montée sur cardan. Cette tige de compensation fait que les composantes de la pression interne à l'appareil se compensent mutuellement, dans le sens axial. Ainsi, la tige de piston est de force nulle.


Pour déplacer le ressort Hydro-Bloc, il suffit de vaincre la force de frottement des éléments d'étanchéité et la résistance hydraulique des buses de piston, comme le montre la courbe de force de la **figure 1**.


Dans ce type d'appareil, du fait de l'étanchéité supplémentaire de la tige de piston de compensation; le frottement est un peu supérieur à celui du Bloc-O-Lift. L'amortissement des déplacements peut être déterminé, comme pour le Bloc-O-Lift, en faisant varier le diamètre de la buse.

Le piston de séparation sépare le volume de compensation, exempt de pression, du volume de travail du piston. Le volume de compensation sert uniquement à loger et à protéger la tige du piston de compensation lors du déplacement de l'appareil dans le sens compression. Pour compenser la dilatation de l'huile lors des changements de température, la chambre de travail reçoit, en plus de l'huile, une réserve de gaz constamment sous pression.

En conséquence, lorsque le clapet est fermé, Hydro-Bloc se comporte de façon similaire au Bloc-O-Lift à blocage élastique (figure 3). Toutefois, l'effet de ressort de Hydro-Bloc est beaucoup plus faible, du fait de la réserve de gaz relativement petite, de sorte que dans les deux sens de déplacement, il bloque de manière presque rigide. La force de déclenchement du ressort est d'environ 125 N, la course de déclenchement 2,5 mm.

Hydro-Bloc, structure et courbe caractéristique

La figure 2 montre un autre type de construction du ressort Hydro-Bloc. Sur le plan conception, les deux types se distinguent par le support du piston de séparation. Alors que le piston de séparation de l'Hydro-Bloc présenté à la figure 1 repose sur une gorge circulaire, celui de la figure 2 vient buter contre un ressort mécanique. La dilatation de l'huile due à la température est compensée par le ressort, de sorte que la réserve de gaz n'est pas nécessaire. Pour cette raison, l'appareil se comporte, clapet fermé, de manière rigide dans les deux sens de déplacement. Ce n'est que lorsque la charge extérieure dépasse la force initiale du ressort mécanique qu'il est possible de rentrer la tige de piston. Dans cette variante de ressort, la force de déclenchement est essentiellement fonction de la force du ressort du clapet. Elle est d'environ 100 N, pour une course clapet de 3,5 mm.

STABILUS propose des amortisseurs couvrant une grande variété d'applications. Dans la construction automobile, l'industrie des procédés, l'industrie du meuble, les amortisseurs Stab-O-Shoc apportent des solutions partout où il y a du mouvement et des vibrations.

Les vibrations sont transmises aux amortisseurs qui convertissent l'énergie cinétique en énergie thermique. Les forces d'amortissement dépendent ainsi toujours de la vitesse du piston.

Les amortisseurs hydrauliques équipés d'un système de piston modulaire permettent d'adapter les forces de tension et de compression en fonction de l'application.

Caractéristiques

- Orientation libre: installation possible dans n'importe quelle orientation,
- Orientation fixe: installation avec la tige vers le bas ou vers le haut.
- Avec frottement : lorsque la charge s'inverse, la force d'amortissement se déclenche immédiatement. La force est transmise sans course à vide,
- Sans frottement: lorsque la charge s'inverse, le déclenchement et la transmission de la force d'amortissement ont lieu au bout d'un certain laps de temps,
- Force d'extension : il est possible de spécifier la force d'extension statique de la tige de piston.

Applications et avantages:

- · Ouverture et fermeture faciles de portes et couvercles,
- · Freinage du mouvement de fermeture de portes,
- Allègement des charges qui s'exercent sur les mécanismes de charnières,
- · Sécurisation de l'ouverture,
- · Montage facile,
- Conception compacte, design attractif,
- · Aucun entretien.

Figure 2

Hydro-Bloc avec précontrainte du piston de séparation par ressort cylindrique

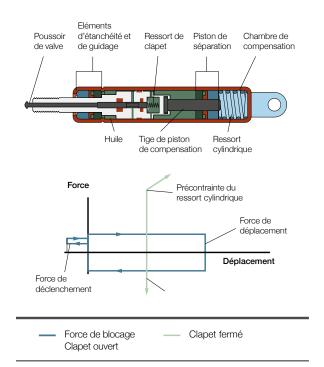
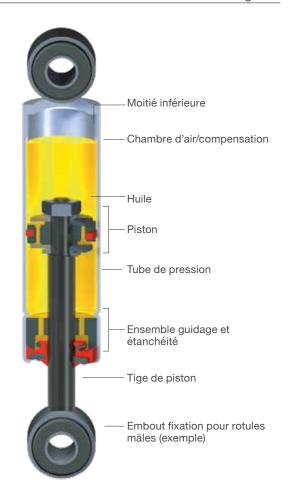
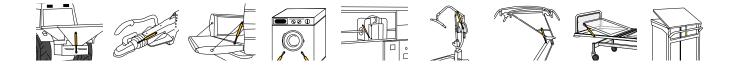




Figure 3

1.5. Amortisseurs hydrauliques STABILUS Stab-O-Shoc

1.5.1 Stab-O-Shoc Amortisseurs de mouvement et de fin de course

Des mouvements incontrôlés lors de l'ouverture, la fermeture, l'abaissement ou le relevage de couvercles compromettent la sécurité et le bon fonctionnement, et soumettent le matériau à des contraintes. La force d'amortissement délivrée par les amortisseurs de mouvement et de fin de course contribue au contrôle du mouvement lors de l'abaissement et du relevage de couvercles. Les amortisseurs réduisent en outre l'usure des matériaux en évitant les arrêts brutaux en fin de course.

En plus des modèles d'amortisseurs standard HD15 et HD24 décrits dans les pages suivantes, STABILUS propose de nombreuses variantes, comme le GD15 ou le GD24/29SP.

N'hésitez pas à nous contacter pour plus d'informations sur ces produits.

1.5.2 Stab-O-Shoc Amortisseurs de vibrations

Des vibrations indésirables peuvent perturber le bon fonctionnement des machines et équipements et raccourcir leur durée de vie. Les amortisseurs de vibrations STABILUS convertissent l'énergie cinétique générée par les pièces en mouvement en énergie thermique et préservent ainsi les matériaux des chocs et des grandes amplitudes d'oscillation.

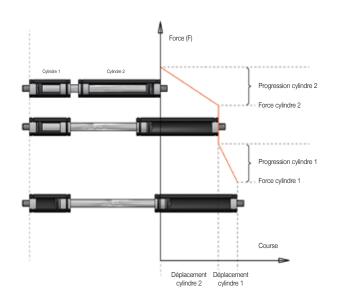
Avec les modèles HD24 Mb et TA20, STABILUS propose également des produits standard sur ce segment. Si les produits standard ne conviennent pas, nous pouvons fournir d'autres variantes, comme les GD15SP, HD24/28BV, TA30 ou TA40.

1.6. Ressorts à gaz IndustryLine

Les ressorts à gaz STABILUS IndustryLine complètent la gamme standard et sont également utilisés dans des applications spécifiques ou exigeant peu d'encombrement.

Les ressorts à gaz en traction fonctionnent à l'inverse des ressorts à gaz standard. Le gaz sous pression dans le cylindre pousse la tige de piston vers l'intérieur. La force du ressort F1 est le résultat de la pression dans le cylindre, laquelle est générée par le remplissage en azote moyen. La zone du segment de piston entre la tige du piston et le diamètre du cylindre interne est déterminante. Quand aucune charge n'est appliquée, la tige de piston est toujours compressée. Les ressorts à gaz en traction des séries "Z" n'ont pas d'amortisseur.

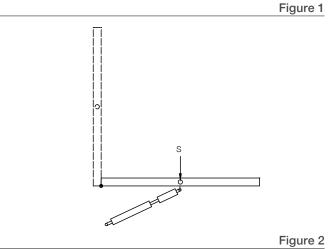
Les séries ZD sont disponibles avec des amortisseurs. Les ressorts à gaz en traction de la gamme IndustryLine

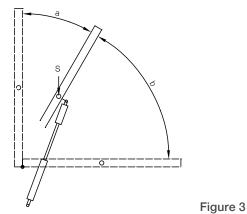

chez STABILUS sont disponibles en acier, AISI 303/304 et AISI 316L/316Ti.

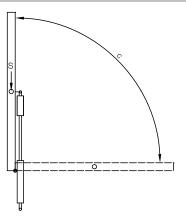
L'interêt des ressorts à gaz de la gamme IndustryLine est la possibilité de développer des solutions spéciales en fonction des demandes de nos clients. Pour cela, nous disposons d'une équipe hautement qualifiée.

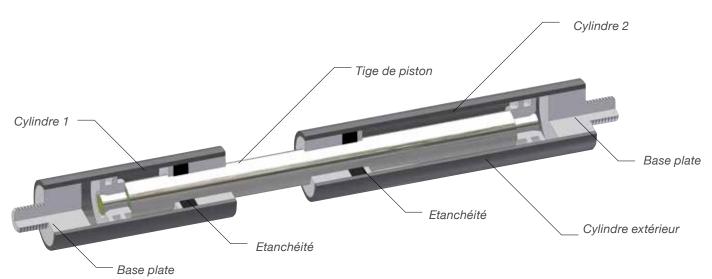
Le ressort à gaz double course breveté en est l'un des exemples.

STABILUS a spécialement développé les ressorts à gaz double course pour l'assitance de lourds ouvrants avec un angle d'ouverture important. Cette assistance est caractérisée par un départ lent et une arrivée avec une force importante. Ces ressorts possèdent deux cylindres qui sont remplis individuellement avec des pressions différentes afin de délivrer deux efforts différents.


La compression de la tige génère une courbe non linéaire qui permet d'ajuster facilement la force d'ouverture de l'ouvrant.


Dans la position A (L) figure 1), le centre de gravité S est le plus éloigné du point de pivot. La plus grande force est requise pour ouvrir le volet. Les deux forces sont compressées. Le cylindre avec la plus grande force ouvre le volet.


Dans la position B (figure 2), le point de gravité S se rapproche du point de pivot. Une plus faible force de ressort est requise. La course 1 est étendue dans cette position. La part du ressort 2 avec la plus faible force de maintien active.


Dans la position C (figure 3), le point de gravité S est proche ou directement sur le point pivot. Une force de ressort faible est requise. Les deux courses sont totalement étendues.

Les ressorts à gaz double course ont été spécialement développés pour les applications spécifiques. Les plages sont adaptées à la cinématique de l'application. Les ressorts à gaz double course de la gamme IndustryLine chez STABILUS sont disponibles en acier, AISI303/304 et AISI 316L/316Ti.

1.7. Sélection et montage d'un ressort à gaz

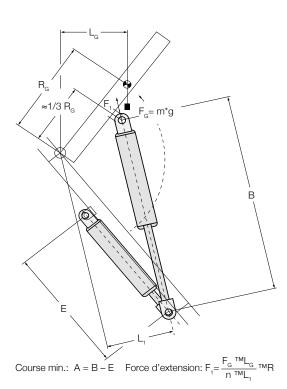
Pour la sélection du ressort à gaz idéal, nous préconisons l'utilisation des catalogues STABILUS. Ils contiennent de nombreuses variantes concernant la course A, la longueur en extension B, la force d'extension $F_{\scriptscriptstyle 1}$ et le type de fixations des ressorts à gaz STABILUS. La détermination des cotes A et B nécessaires pour l'application s'effectue habituellement par un simple calcul approximatif. On arrive à une utilisation à l'ouverture et à la fermeture particulièrement confortable, lorsque le type de ressort à gaz et ses points de fixation sont déterminés par un calcul de simulation effectué a l'aide du programme de proposition de montage STABILUS.

1.7.1 Calcul de la force nominale F₁, calcul approximatif

A la **figure 1**, on représente schématiquement un volet quelconque (capot de machine, porte d'armoire, rampe de chargement etc.) en position ouverte et fermée. On a porté toutes les cotes et forces nécessaires pour le calcul approximatif.

La longueur en extension B peut être choisie de manière à ce que le ressort serve de butée en fin d'ouverture du volet. La course minimale A nécessaire découle alors de la différence entre la longueur sortie, par rapport à la longueur rentrée E. La course, c'est-à-dire les longueurs sortie et rentrée, peut être déterminée graphiquement, sur un dessin à l'échelle ou à l'aide de fonctions trigonométriques. La course du ressort devrait également tenir compte d'une tolérance de longueur résultant de l'application et du ressort à gaz.

La force d'extension F_1 du ressort à gaz est calculée à partir du bilan des moments, au niveau du palier de l'application. La force d'extension est calculée de telle sorte que le volet reste ouvert. A cet effet, le facteur de réserve d'énergie R figure dans l'équation de la **figure 1**. Pour R=1, on a un équilibre des forces, résultant du poids FG de l'application (en son centre de gravité) et de la force d'extension F1 du ressort. Le volet est alors tout juste en équilibre.


Plus le facteur de réserve d'énergie est choisi grand, plus il faudra de «force manuelle» pour fermer l'application, En règle générale, le facteur de réserve d'énergie se tient entre 1,2 et 1,3. A des températures environnantes dépassant les +30 °C, R peut être plus petit, en cas de températures environnantes inférieures à +10 °C, R devrait être choisi plus grand (> voir 1.2.2).

La rigidité et le poids de l'application vont déterminer le nombre n de ressorts à gaz nécessaires.

Les volets grands et flexibles nécessitent le plus souvent deux vérins, afin d'éviter une déformation du volet.

Figure 1

Course et force d'extension d'un ressort a gaz, nécessaires pour l'ouverture d'un volet

Course du ressort à gaz [mm] B : Longueur en extension du ressort à gaz [mm] E : Longueur rétractée du ressort à gaz [mm] Force d'extension du ressort à gaz [N] F_{G} [N] Poids de l'application en son centre de gravité Accélération de la pesanteur, 9,81 [m/s²] g : Distance verticale palier/ligne d'effet dynamique F, [mm] Distance verticale palier/ligne d'effet dynamique Fo [mm] Rayon palier/centre de gravité R_G: [mm] Masse de l'application [kg] Nombre de ressorts à gaz [/] Facteur de réserve d'énergie 1,2... 1,3 [mm]

1.7.2 Calcul de la courbe de force manuelle, simulation graphique

Pour la détermination ou pour l'optimisation de la fonction de déplacement d'une application, on se sert de la grandeur des forces manuelles nécessaires et ce, sur l'ensemble de la zone de déplacement de l'application. Les courbes de force manuelle pour l'ouverture et la fermeture de l'application peuvent être déterminées par un calcul de simulation, à l'aide du programme de proposition de montage STABILUS. L'objet du calcul de simulation est le dimensionnement optimal du ressort a gaz, respectivement sa force d'extension et sa constante de raideur, en liaison avec les points de fixation convenant à l'application. Cet optimum dépend de la fonction du ressort.

C'est ainsi par exemple que pour un hayon d'automobile, les ressorts à gaz sont calculés de telle façon que, dès les premiers degrés d'ouverture, la mise en œuvre ne nécessite quasiment pas de force manuelle et qu'à la fermeture, ils permettent un enclenchement automatique dans la serrure. D'autres applications demandent une ouverture immédiate ou une extension immédiate du ressort (par exemple le dossier d'un siège de bureau), d'autres doivent s'arrêter dans n'importe quelle position (par exemple la partie supérieure d'un banc à ultra-violets etc.) Toutes ces exigences contradictoires se représentent à l'aide de la courbe de force manuelle. L'établissement d'une proposition de montage est l'affaire de STABILUS ou des représentants STABILUS. On trouvera (figure 1), les indications nécessaires pour le traitement d'une proposition de montage d'une application avec une articulation. Si l'application est actionnée par un système à quatre articulations, il faut joindre un dessin de montage avec la description géométrique de ces articulations.

La figure 2 montre le résultat d'un calcul de simulation à partir de l'exemple du croquis d'utilisation de la figure 1. A la partie gauche de la figure 2, la cinématique de l'application est représentée de façon schématique. Les éléments utilisés et les forces sont numérotés. La barre 2 représente le volet, fixé au palier 1. Ce volet est représenté en position fermée et ouverte, l'angle de pivotement au niveau du palier est de 45°.

Le ressort à gaz figure en tant qu'élément 3 et la position des fixations du ressort est repérée par des cercles à l'extrémité de la tige et du tube. A côté des composants de l'application figurent les forces, telles que le poids du volet FG (4) et la force manuelle FH (5) nécessaires pour l'ouverture et la fermeture du volet, selon la position et le sens. Les trajectoires des points d'application des forces sont également représentées. Les forces manuelles pour l'ouverture et la fermeture de l'application peuvent aussi être placées à différentes positions.

La partie droite de la **figure 2** montre les courbes de force manuelle de l'application. Ces courbes sont désignées par des lettres, la légende est portée en haut. A l'origine de l'abscisse (angle d'ouverture 0°) le volet est fermé, le ressort à gaz est rentré. Les forces manuelles positives signifient que l'application nécessite de la force pour le déplacement du ressort. En cas de forces manuelles négatives, le mouvement du ressort est supérieur à celui du poids, de sorte que l'application se déplace d'elle-même.

Dans l'exemple de la **figure 2**, la courbe de force manuelle E représente le comportement à l'ouverture du volet à F_1 nominal et la température ambiante du ressort à gaz. Pour ouvrir le volet à partir de la position fermée, la force manuelle initiale est d'environ 20 N. A mesure de l'évolution du processus d'ouverture, la force manuelle – du fait de l'effet de levier croissant du ressort – diminue de manière continue, jusqu'à atteindre le point d'intersection avec l'abscisse (angle d'ouverture d'environ 15°). A partir de ce point, la force manuelle devient négative.

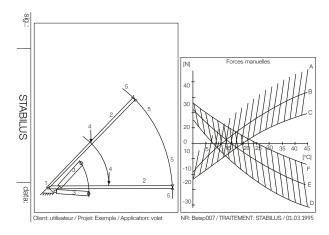

Le volet s'ouvre alors de lui-même, jusqu'à la butée (angle d'ouverture de 45°). Il faut donc environ 33 N de force manuelle pour initier le processus de fermeture du volet. Après le point d'intersection de la courbe avec l'abscisse, la force manuelle devenant négative, le volet vient automatiquement se verrouiller dans la serrure. Le point d'intersection des courbes avec l'abscisse dépend essentiellement des points de fixation du ressort à gaz, de la force d'extension F_1 du ressort et de la raideur x, ainsi que de la température environnante de l'application.

Figure 2

Résultat du calcul de simulation, cinématique et courbes de force manuelle

Caractérisation des forces manuelles

- A : Température = 80 degrès, fermeture, tolérances maxi
- B: Température = 20 degrès, fermeture
- C : Température = 30 degrès, fermeture, tolérances mini
- D : Température = 80 degrès, ouverture, tolérances maxi
- E : Température = 20 degrès, ouverture
- F : Température = 30 degrès, ouverture, tolérances mini

L'exemple de la figure 2 montre, outre la courbe de force manuelle à température ambiante, les courbes à 80 °C et à 30 °C. Ces courbes tiennent également compte de la tolérance de la force d'extension F1 du ressort, de sorte que les forces manuelles minimales et maximales pour l'application peuvent être lues. La force manuelle au début de la courbe C (angle d'ouverture de 45°) est aussi appelée «force de maintien» de l'application, car elle représente la réserve d'énergie nécessaire pour maintenir le volet ouvert à la température environnante la plus faible (ici -30 °C) et la tolérance inférieure de force d'extension. Elle devrait être d'au moins 20 N. Les grandeurs à la base de l'exemple sont reprises dans la fiche de données de la proposition de montage (\hookrightarrow figure 3).

Les caractéristiques du programme de proposition de montage STABILUS peuvent se résumer ainsi :

- · variation des points de fixation des ressorts à gaz,
- · variation de la force d'extension et de l'hystérésis,
- · variation de la constante de raideur,
- · courbe caractéristique au choix (linéaire, dégressive, progressive),
- · calcul de n'importe quel concept, depuis un système de 1 à 4 articulations,
- · prise en compte des tolérances de longueur,
- · prise en compte des tolérances de force,
- prise en compte des plages de température d'utilisation. Pour les demandes d'établissement de propositions de montage, merci d'utiliser la figure 1.

Figure 3

Fiche de données du programme de proposition de montage STABILUS

Proposition de montage N°: Exemple

90

Angle final

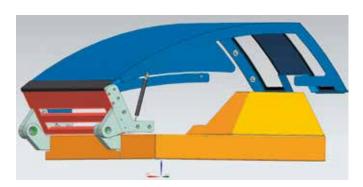
Origine Client Projet Application	STABILU Utilisater Exemple Volet	ur			
1 PALIER	X 0,0	Y 0,0	Z 0,0		
2 BARRE	Longueu	ır = 840,0			
3 RESSORT A GA Raccordement Tube de pression Tige de piston	Position Angle de Angle fin Angle de Angle fin	e départ al e départ	Y 77,7 123,8 200,0 200,0	Z -124,1 78,0 -416,0 -416,0	0,0 0,0 0,0 0,0
Numero de piece F1= Rentré= Sorti = Course = X = Nombre par applio	: 400 300,00 500,00 200,00 1,20 ation 2				
4 Force : fg Position Angle de départ Angle final	X 300,0 348,9	Y -350,0 301,2	Z 0,0 0,0		
Valeur = Tolérance supérieur Tolérence inférieur		210,0 0,0 0,0			
5 Force: Fh Position Angle initial Angle final Angle initial Angle final	X 600,0 697,9 550,0 648,1	Y -700,0 602,5 -650,0 552,3	Z 0,0 0,0 0,0 0,0		
Forces manuelles	voir diagra	amme		Longueur Forces	s (mm) (N)

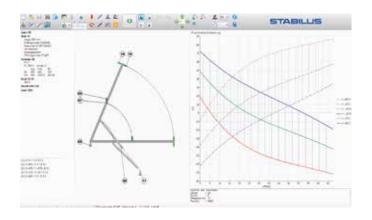
Moments (Nm) Angles

(degres)

1.7.3 Services de conseils

Chaque installation présente des exigences spécifiques. Nous avons à cœur de vous offrir des solutions adaptées à vos besoins. Nos services englobent le conseil en ingénierie d'application, avec des propositions relatives à l'installation et la fourniture d'échantillons.


Le système et les standards applicables sont définis en concertation avec le client. Du concept initial à la mise en œuvre de la solution individuelle optimale, vous bénéficiez de l'expérience et du savoir-faire de notre équipe d'ingénieurs, experts et conseillers en application.


Mettez-nous au défi!

Vos exigences nous font progresser.

Consultez notre site Internet. Un configurateur CAO vous permet de télécharger les modèles 3D et dessins 2D des ressorts à gaz de notre gamme standard directement dans votre système CAO : STABILUS.cadclick.com

1.8. Annexes

Symboles et unités utilisés

section du tube de pression (Ø intérieur) [mm²] $A_{\rm K}$ section de la tige piston [mm²] С pente [N/mm]

F force du ressort à gaz [N]

F₁ force d'extension en début de course* du ressort [N] F_2 force d'extension en fin de course* du ressort [N] F₃ force de compression en début de course* du ressort [N] force de compression en fin de course* du ressort [N]

 F_{D}^{\cdot} force de blocage du gaz ou de l'huile dans le sens compression [N]

force manuelle [N] force de gommage [N]

 $F_{\rm R}$ force de frottement du ressort à gaz [N]

force de blocage du gaz ou de l'huile dans le sens traction " 1

 L_{B} longueur comprimée du ressort mécanique [mm] n exponent polytropique [/] N_o azote [/]

surpression du gaz dans le tube de pression [N/mm²] р surpression, ressort à gaz en extension [N/mm²] p_1 surpression, ressort à gaz en compression [N/mm²] p_2

pression ambiante (ca. 0,1 N/mm²) [N/mm²] p_& course, débattement du ressort à gaz [mm] S

début de course (ressort sorti)/zone d'amortissement hydraulique [mm] S, fin de course (ressort rentré)/zone d'amortissement pneumatique [mm] S,

S₃ point de prise en charge du ressort mécanique [mm]

Т température [K]

 T_0 température normalisée (293 K = 20 °C) [K]

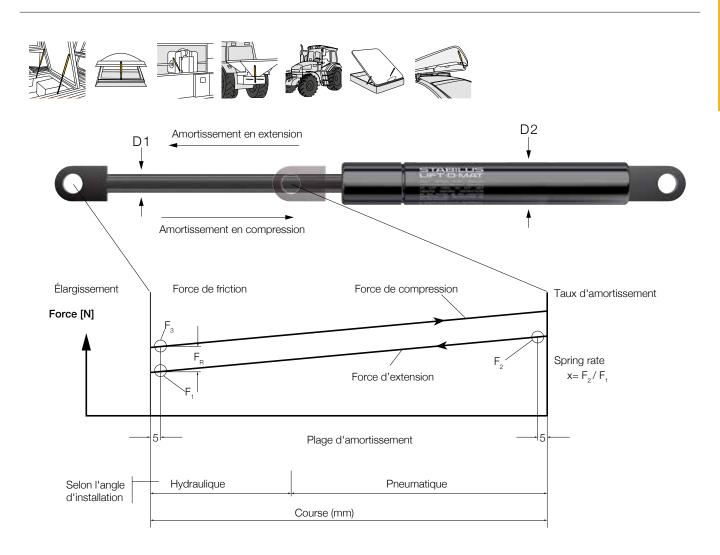
vitesse d'extension [m/s]

٧ volume de gaz disponible dans le tube de pression [mm³]

V٦ volume de gaz en début de course [mm3] V, volume de gaz en fin de course [mm3]

W travail de ressort [Nmm]

W. travail de ressort en fin de course [Nmm]


Χ constante de raideur F₉/F₁ [/]

^{*:} sur appareil standard, 5 mm après le début de course et 5 mm avant la fin de course

2.1. Ressorts à gaz Lift-O-Mat

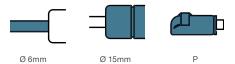
D1 mm	D2 mm	Force d'extension F ₁ [N]	Course maxi.	x (≈)	F _R maxi. [N]
6	15	50 - 400	150	1,30	50
8	19	100 - 800	250	1,35	60
10	22	150 - 1150	400	1,40	80
14	28	500 - 2100	500	1,50	80
20	42	2400 - 5200	500	1,45	150

Instruction d'installation STAB-Spec. 1000 5593

Forces mesurées statiquement **STAB-Spec. 1000 9033**

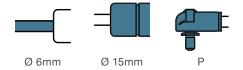
Instruction de démontage STAB-Spec. 1000 9375

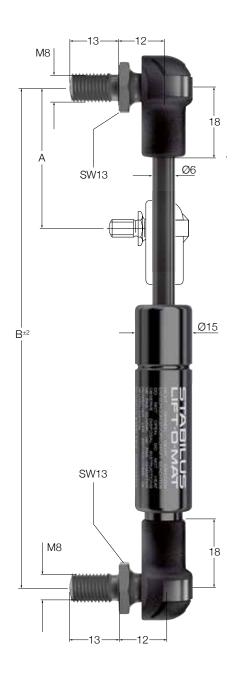
www.stabilus.com/service-spare-parts/recycling/



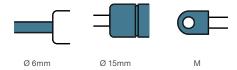
Levage, descente, déplacement, réglage

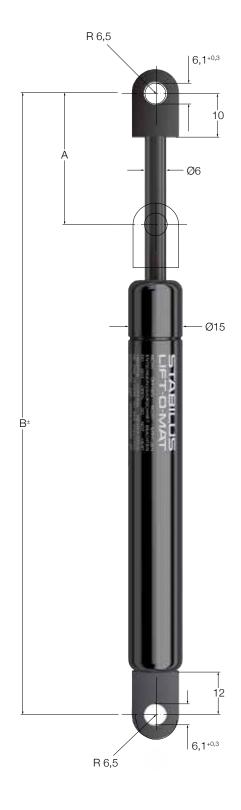
Tigre de piston	Tube de pression	Oeillet plastique	Oeillet métal	Cage à rotule plastique	Cage à rotule métal	Cage plastique sans rotule	Fixation variable
Ø x mm	Ø x mm	Р	М	Р	М	Р	
6	15					Х	
6	15			Χ			
6	15	Χ					
6	15		Χ				
8	19					Χ	
8	19			Χ			
8	19	Χ					
8	19		Χ				
10	22					Χ	
10	22			Χ			
10	22		Χ				
14	28				Χ		
14	28		Χ				
20	42		Χ				
20	42		Χ				
8	19						Χ
10	22						Χ


2.1.1 Diamètre de tige 6 mm



Course	Longueur sortie	Force	Référence
Α	В	F ₁	
mm	mm	N	
20	115,5	50	4727 PB
		100	4728 PX
		150	4729 PS
		200	4731 PZ
		250	4732 PU
		300	4733 PP
		350	4734 PK
		400	4735 PF
40	155,5	50	2606 NW
		100	2607 NR
		150	2608 NM
		200	2609 NH
		250	2611 NO
		300	2612 NJ
		350	2613 NE
		400	2615 NV
60	195,5	50	6444 IK
		100	6488 IU
		150	6489 IP
		200	6491 IW
		250	6492 IR
		300	6493 IM
		350	6494 IH
		400	6495 IC
80	235,5	50	6449 IM
		100	6501 IP
		150	6502 IK
		200	6503 IF
		250	6504 IA
80	235,5	300	6505 IW
		350	6506 IR
		400	6507 IM
100	275,5	50	6458 IL
		100	6508 IH
		150	6509 IC
		200	6511 IJ
		250	6514 IV
		300	6515 IQ
		350	6516 IL
100	045.5	400	6517 IG
120	315,5	50	6462 II
		100	6519 IX
		150	6521 ID
		200	6522 IZ
		250	6523 IU
		300	6524 IP
		350	6525 IK
150	075 5	400	6526 IF
150	375,5	50	6467 IK
		100	6539 IL
		150	6541 IS
		200	6542 IN
		250	6543 II
		300	6544 ID
		350	6545 IZ
		400	6153 PC

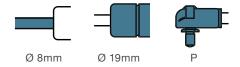




Course	Longueur sortie	Force	Référence
Α	В	F1	
mm	mm	N	
20	115,5	50	4829 DF
	,	100	4832 DH
		150	4834 DY
		200	1324 DI
		250	4836 DO
		300	4838 DE
		350	4842 DB
		400	4844 DS
40	155,5	50	4846 DI
		100	4848 DZ
		150	4851 DA
		200	1338 DJ
		250	4853 DR
		300	4855 DH
		350	4857 DY
		400	4859 DO
60	195,5	50	4862 DQ
		100	4534 DS
		150	4904 DI
		200	1345 DS
		250	4906 DZ
		300	4908 DP
		350	4911 DR
		400	4913 DH
80	235,5	50	4915 DY
		100	4917 DO
		150	4919 DE
		200	1395 DP
		250	4922 DG
80	235,5	300	4924 DX
		350	4926 DN
100	075 5	400	4928 DD
100	275,5	50	4931 DF
		100	4933 DW
		150	4935 DM
		200 250	1406 DD 5004 DJ
		300 350	5007 DV 5009 DL
		400	5009 DL 5012 DN
120	315,5	50	5012 DN 5025 DT
120	010,0	100	5023 DT 5027 DJ
		150	5027 D3 5031 DG
		200	1515 DW
		250	5033 DX
		300	5035 DN
		350	5037 DD
		400	5069 DC
150	375,5	50	5072 DE
		100	5075 DQ
		150	5077 DG
		200	1562 DH
		250	5079 DX
		300	5082 DZ
		350	5084 DP
		400	1205 RU

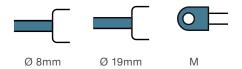
Course	Longueur sortie	Force	Référence
Α	В	F1	
mm	mm	N	
20	106,5	50	192910
		100	192929
		150	192937
		200	192945
		250	192953
		300	192961
		350	192988
		400	192996
40	145,5	50	185175
		100	191752
		150	192805
		200	192813
		250	192821
		300	082309
		350	082317
		400	094307
60	185,5	50	192848
		100	192856
		150	192864
		200	192872
		250	192880
		300	082384
		350	082392
		400	094315
80	226,5	50	082406
		100	082414
		150	082422
		200	082430
80	226,5	250	082449
		300	082457
		350	082465
		400	094323
100	265,5	50	082473
		100	082481
		150	082503
		200	082511
		250	082538
		300	082546
		350	082554
		400	094331
120	305,5	50	082562
		100	082570
		150	082589
		200	082597
		250	082600
		300	082627
		350	082635
		400	094358
150	365,5	50	082643
		100	082651
		150	082678
		200	082686
		250	082694
		300	082708
		350	082716
		400	6756 RS

2.1.2 Diamètre de tige 8 mm


Course	Longuour sortio	Force	Référence
	Longueur sortie		helerelice
A	В	F1	
mm	mm	N	
60	205	500	2616 NQ
		600	2617 NL
		700	2618 NG
		800	2619 NB
80	245	100	752614
		150	752622
		200	1417 EP
		250	752630
		300	1418 EK
		350	1419 EF
		400	752649
		500	752657
		600	752665
		700	2622 ND
		800	2623 NZ
100	285	100	752673
		150	752681
		200	1421 EM
		250	752703
		300	1422 EH
		350	1423 EC
		400	752711
		500	752738
		600	752746
		700	2624 NU
		800	2625 NP
120	325	100	752754
		150	752762
		200	1424 EY
		250	752770
		300	1425 ET
		350	1426 EO
120	325	400	752789
		500	752797
		600	752800
		700	2626 NK
		800	2627 NF
140	365	400	2628 NA
		500	2629 NW
		600	2631 NC
		700	2632 NY
		800	2633 NT
160	405	100	752819
		150	752827
		200	1427 EJ
		250	752835
		300	1428 EE
		350	1431 EG
		400	752843
		500	752851
		600	752878
		700	2634 NO
		800	2635 NJ

Approprié aux rotules mâles selon DIN 71803 Ø 10

Course A	Longueur sortie	Force F1 N	Référence
mm	mm	IN	
180	445	100	2636 NE
		150	2638 NV
		200	2639 NQ
		250	2641 NX
		300	2642 NS
		350	2643 NN
		400	2644 NI
		500	2645 ND
		600	2646 NZ
		700	2647 NU
		800	2648 NP
200	485	100	752886
		150	752894
		200	1432 EB
		250	752908
		300	1433 EX
		350	1434 ES
		400	752916
		500	752910
		600	752924
		700	2649 NK
000	FOF	800	2651 NR
220	525	100	2652 M
		150	2653 NH
		200	2654 NC
		250	2655 NY
		300	2656 NT
		350	2657 NO
		400	2658 NJ
		500	2659 NE
		600	2661 NL
		700	2662 NG
		800	2663 NB
250	585	100	752940
		150	752959
		200	1435 EN
		250	752967
		300	1436 EI
		350	1437 ED
		400	752975
		500	752983
		600	752991
		700	2664 NX
		800	2665 NS

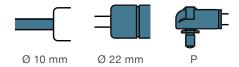


Course	Longueur sortie	Force	Référence
Α	В	F1	
mm	mm	N	
60	205	500	094471
		600	083240
		700	083259
		800	094412
80	245	100	447609
		150	466441
		200	381926
		250	287806
		300	368237
		350	550817
		400	278076
		500	083305
		600	083313
		700	083321
		800	094420
100	285	100	321400
		150	321400
		200	315826
		250	150344
		300	632600
		350	462047
		400	709492
		500	083380
		600	083399
		700	083402
		800	094439
120	325	100	253308
		150	265802
		200	3008AM
		250	244880
		300	377007
		350	510599
		400	684872
		500	094498
		600	083461
		700	083488
		800	094447
140	365	100	177032
		150	287814
		200	630896
		250	253723
		300	3579UR
		350	152495
		400	083534
		500	083542
		600	083550
		700	083569
		800	094455

Course	Longueur cortic	Force	Référence
Course	Longueur sortie		Reference
A	В	F1	
mm	mm	N	
160	405	100	083577
		150	095621
		200	083585
		250	095648
		300	083593
		350	095656
		400	083607
		500	083615
		600	083623
		700	083631
		800	094463
180		100	083658
		150	094501
		250	094528
		300	083674
		350	094536
		400	083682
		500	083690
		600	083704
	445,5	700	083712
		800	094544
200	485	100	083720
		150	094552
		200	083739
		250	094560
		300	083747
		350	094579
		400	083755
		500	083763
		600	083771
	485,5	700	083798
		800	094587
220	525	100	083801
		150	094595
		200	083828
		300	083836
		350	094617
		400	083844
		500	083852
		600	083860
	525,5	700	083879
		800	094625
250	585	100	083887
		150	094633
		200	083895
		250	094641
		300	083909
		350	094668
		400	083917
		500	083925
		600	083933
	585,5	700	083941
		800	094676

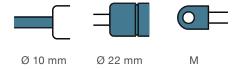
Course	Longueur sortie	Force	Référence
Α	В	F1	
mm	mm	N	
60	205	500	084018
		600	084026
	205,5	700	084034
		800	094684
80	245	500	084093
		600	084107
	245,5	700	084115
		800	094692
100	285	500	084174
		600	084182
	285,5	700	084190
		800	094706
120	325	500	084247
		600	094714
	325,5	700	084263
		800	094722
140	365	400	084352
		500	084360
		600	084379
	365,5	700	084387
		800	094749
160	405	100	084395
		150	094765
		200	084409
		250	094773
		300	084417
		350	094781
		400	084425
		500	084476
		600	084484
	405,5	700	084492
		800	094757
180	445	100	084506
		150	094803
		200	084514
		250	094811
		300	084522
		350	094838
		400	086363
		500	084549
		600	084557
	445,5	700	084565
		800	094846
200	485	100	084573
		150	094854
		200	084581
		250	094862
		300	084603
		350	094870
		400	084611

Course	Longueur sortie	Force	Référence
Α	В	F1	
mm	mm	N	
200	485	500	084638
		600	084646
	485,5	700	084654
		800	094889
220	525	100	084662
		150	094897
		200	084670
		250	094900
		300	084689
		350	094919
		400	084697
		500	084700
		600	084719
	525,5	700	084727
		800	094927
250	585	100	084735
		150	094935
		200	084743
		250	094943
		300	084751
		350	094951
		400	084778
		500	084786
		600	084794
	585,5	700	084808
		800	094978

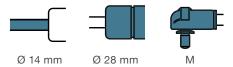


2.1.3 Diamètre de tige 10 mm

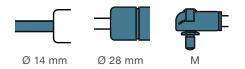
Course	Longueur sortie	Force	Référence
A	В	F1	11010101100
mm	mm	N	
100	285	900	2666 NN
		1000	2667 NI
		1150	2668 ND
150	385	900	2669 NZ
		1000	2671 NF
		1150	2672 NA
200	485	700	1442 EW
		800	1443 ER
		900	1444 EM
		1000	1445 EH
		1150	2673 NW
250	585	700	1446 EC
		800	1447 EY
		900	1448 ET
		1000	1449 EO
		1150	2674 NR
300	685	150	2675 NM
		200	3935 LP
		250	1438 EZ
		300	2677 NC
		350	1652 CK
		400	753009
		500	2679 NT
		600	2682 NV
		700	753017
		800	2683 NQ
		900	753025
300	685	1000	753033
		1150	2684 NL
350	785	150	2685 NG
		200	2686 NB
		250	1439 EU
		300	2687 NX
		350	2688 NS
		400	753041
		500	2689 NN
		600	2691 NU
		700	753068
		800	2692 NP
		900	753076
		1000	753084
400	885	150	2694 NF
	- 7-	200	2695 NA
		250	1441 EA
		300	2696 NW
		350	2697 NR
		400	753092
		500	2698 NM
		600	2699 NH
		700	753106
		800	2701 NN
			_, , , , , , ,

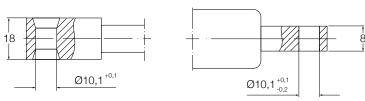


Course	Longueur sortie	Force	Référence
A	В	F1	
mm ———	mm	N	
100	285	900	085146
		1000	085154
		1150	095303
150	385	900	085189
		1000	085197
		1150	095311
200	485	700	497614
		800	232785
		900	085227
		1000	085235
		1150	095338
250	585	700	292001
		800	303925
		900	085278
		1000	085286
		1150	095346
300	685	150	095354
		200	095362
		250	095370
		300	095389
		350	095397
		400	095400
		500	095419
		600	095427
		700	085294
		800	085308
		900	085316
		1000	085324
		1150	095435
350	785	150	095443
		200	095451
		250	095478
		300	095486
		350	095494
		400	095508
		500	095516
		600	095524
		700	085332
		800	085340
		900	085359
400	005	1000	085367
400	885	150	095540
		200	095559
		250	095567
		300	095575
		350	095583
		400	095591
		500	095605
		600	095613
		700	085375
		800	085383

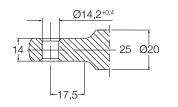


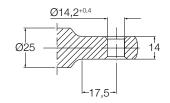
Course	Longueur sortie	Force	Référence
Α	В	F1	
mm	mm	N	
95	285	900	084832
		1000	084840
		1150	094986
145	385	900	084875
		1000	084883
		1150	094994
195	485	900	084913
		1000	084921
		1150	095001
245	585	900	084964
		1000	084972
		1150	095028
295	685	150	095036
		200	095044
		250	095052
		300	095060
		350	095079
		400	095087
		500	095095
		600	095109
		700	084980
		800	084999
		900	085014
		1000	085022
		1150	097306
345	785	150	095117
		200	095125
		250	095133
		300	095141
		350	095176
		400	095168
		500	095184
		600	095192
		700	085030
		800	085049
		900	085057
		1000	085065
395	885	150	095214
		200	095222
		250	095230
		300	095249
		350	095257
		400	095265
		500	095273
		600	095281
		700	085073
		800	086401


2.1.4 Diamètre de tige 14 mm

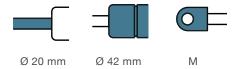

Course	Longueur sortie	Force	Référence
Α	В	F1	
mm	mm	N	
100	335,5	1300	2029 LS
	,-	1500	2357 LQ
		1700	2358 LL
		1900	2359 LG
		2100	2361 LN
150	435,5	1300	2033 LP
		1500	2362 LI
		1700	2363 LD
		1900	2364 LZ
		2100	2365 LU
200	535,5	1300	2036 LA
		1500	2366 LP
		1700	2367 LK
		1900	2368 LF
		2100	2369 LA
250	635,5	1300	2075 LI
	333,3	1500	2371 LH
		1700	2372 LC
		1900	2373 LY
		2100	2374 LT
300	735,5	1300	2074 LU
000	700,0	1500	2375 LO
		1700	2376 LJ
300	735,5	1900	2377 LE
000	700,0	2100	2379 LV
350	835,5	1300	2082 LR
000	000,0	1500	2381 LB
		1700	2382 LX
		1900	2383 LS
		2100	2384 LN
400	935,5	1300	2085 LC
400	303,3	1500	2385 LI
		1700	2386 LD
		1900	2387 LZ
		2100	2388 LU
500	1135,5	500	2088 LO
300	1100,0	600	2389 LP
		700	2391 LW
		800	2391 LW 2392 LR
		900	2392 LR 2393 LM
		1000	2394 LH
		1100	2395 LC
		1300 1500	2396 LY
			2397 LT
		1700	2398 LO

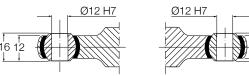
Course A	Longueur sortie	Force F1	Référence
mm	mm	N	
100	302	1300	1847 LW
100	002	1500	2038 LR
		1700	2039 LM
		1900	2041 LT
		2100	2042 LO
150	402	1300	1851 LT
		1500	2043 LJ
		1700	2044 LE
		1900	2046 LV
		2100	2047 LQ
200	502	1300	1854 LE
		1500	2048 LL
		1700	2049 LG
		1900	2051 LN
		2100	2052 LI
250	602	1300	1858 LL
		1500	2055 LU
		1700	2056 LP
		1900	2057 LK
		2100	2058 LF
300	702	1300	1862 LI
		1500	2059 LA
		1900	2062 LC
		2100	2063 LY
350	802	1300	1865 LU
		1500	2064 LT
		1700	2065 LO
		1900	2066 LJ
		2100	2067 LE
400	902	1300	1868 LF
		1500	2069 LV
		1700	2071 LB
		1900	2072 LX
		2100	2073 LS
500	1102	500	1872 LC
		600	2108 LB
		700	2109 LX
		800	2111 LD
		900	2112 LZ
		1000	2113 LU
		1100	2114 LP
		1300	2115 LK
		1500	2116 LF
		1700	2117 LA
		1900	2118 LW





2.1.5 Diamètre de tige 20 mm


Course	Longueur sortie	Force	Référence
Α	В	F1	
mm	mm	N	
150	500	2400	554274
150	300	2800	625018
		3200	625257
		3600	625735
		4000	625974
		4600	626213
		5200	554991
000	600		
200	600	2400	555230
		2800	626452
		3200	626691
		3600	626930
		4000	627408
		4600	615263
		5200	555469
250	700	2400	556186
		2800	627647
		3200	627886
		3600	628125
		4000	628364
		4600	309781
		5200	556425
300	800	2400	556903
		2800	629081
		3200	629320
		3600	629559
300	800	4000	629798
		4600	630037
		5200	557381
350	900	2400	557859
000		2800	630754
		3200	631232
		3600	631471
		4000	632188
		4600	632427
		5200	558098
400	1000	2400	558576
400	1000		322666
		2800	
		3200	632905
		3600	633144
		4000	633383
		4600	633622
500	1000	5200	558815
500	1200	2400	559054
		2800	633861
		3200	634100
		3600	634339
		4000	634578
		4600	634817
		5200	559293



R12,5

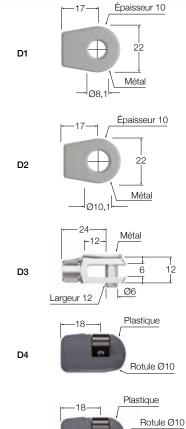
Course	Longueur sortie	Force	Référence
A	•	F1	Hererence
mm	B mm	N	
150	520	2400	233777
		2800	234016
		3200	234255
		3600	234733
		4000	236167
		4600	236406
		5200	236645
200	620	2400	236884
		2800	237362
		3200	238557
		3600	238796
		4000	239035
		4600	239274
		5200	239513
250	720	2400	239752
		2800	239991
		3200	240469
		3600	240708
		4000	240947
		4600	241186
		5200	241425
300	820	2400	242142
	020	2800	242620
		3200	242859
		3600	243098
300	820	4000	243576
	020	4600	243815
		5200	244054
350	920	2400	244293
000	020	2800	244532
		3200	244771
		3600	245010
		4000	245249
		4600	245488
		5200	245727
400	1020	2400	245966
400	1020	2800	246205
		3200	246444
		3600	246683
		4000	246922
		4600	240922
		5200	247101
500	1220	2400	248117
300	1220	2800	248356
		3200	248595
		3600	248595
		4000	249073
		4600	249312 249551
		5200	249001

2.1.6 Ressort à gaz Lift-O-Mat DD

Course A mm	Longueur sortie B mm	Force F1 N	Référence
100	285	100	989233
		150	992579
		200	992818
		250	993057
		300	993296
		350	993535
		400	994013
		500	994252
100		600	994491
120	325	100	042794
		150	044467
		200	044706
		250	044945
		300	045184
		350	045423
		400	045662
		500	045901
		600	046379
140	365	100	048530
		150	068367
		200	068606
		250	069084
		300	069323
		350	069562
		400	069801
		500	070040
		600	070279
160	405	100	072191
		150	072908
		200	073864
		250	074103
		300	074342
		350	074581
		400	074820
		500	075059
		600	075298
180	445	100	081273
		150	081512
		200	081751
		250	083424
		300	083663
		350	083902
		400	084141
		500	084380
		600	084619

Course	Longueur sortie	Force	Référence
Α	В	F1	
mm	mm	N	
200	485	100	085336
		150	094896
		200	095135
		250	095374
		300	095852
		350	096330
		400	096569
		500	096808
		600	097286
220	525	100	101588
		150	101827
		200	102066
		250	102305
		300	102544
		350	102783
		400	103022
		500	103261
		600	103739
250	585	100	105173
		150	105412
		200	105890
		250	106129
		300	106368
		350	106846
		400	107324
		500	107563
		600	108519

2.1.7 Ressorts à gaz Lift-O-Mat PTL


Course	Longueur sortie	Longueur retractée	Force	Référence
A mm	В	С	F ₁ N	
100	305	205	*	814763
150	405	255	*	815719
200	505	305	*	818587
250	605	355	*	819304
300	705	405	*	820021
350	805	455	*	820977
400	905	505	*	822411

Valeur de 100 - 400 N par palier de 25 N. Plage de température de -15 °C à +60 ° C.

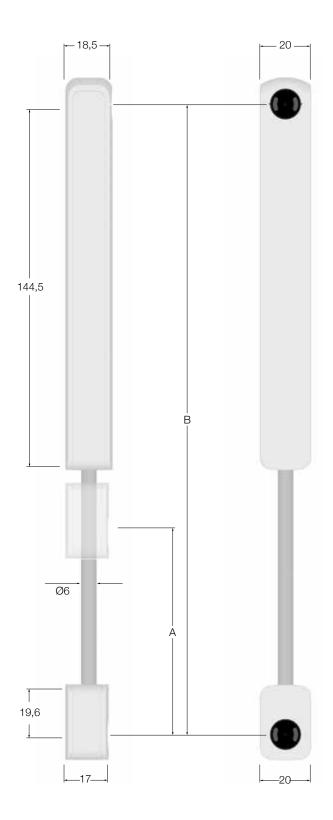
Exemple de référence de commande

123456	0350N	D1
RefNo.	F ₁	Embout du tube de pression

Montage conformément à la spéc. STAB 10203879

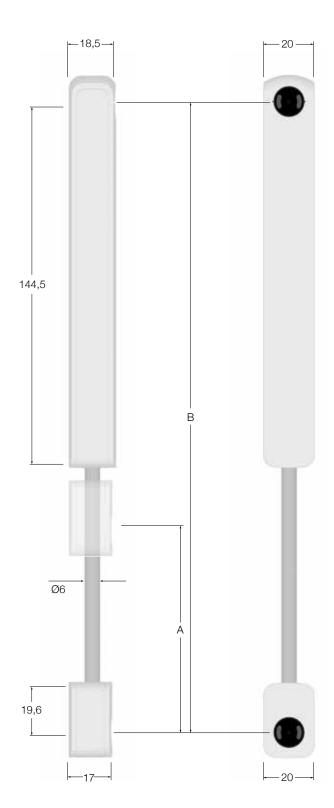
D5

D6


D7

2.1.8 Ressorts à gaz Lift-O-Mat UC

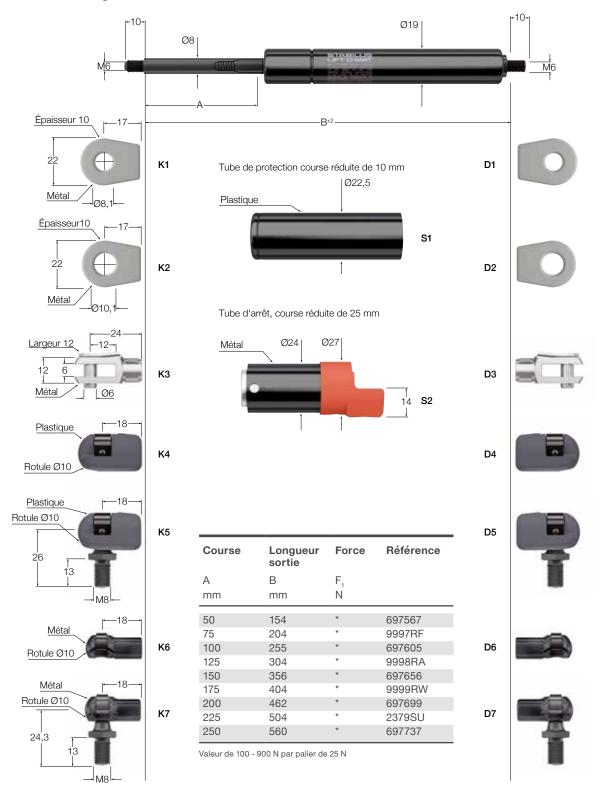
Disponible aussi en Stab-O-Shoc, (→ voir page 98).



Course	Longueur sortie	Force	Couverture de l'ensemble*	
A mm	B mm	F ₁	Blanc	Noir
80	247	50	206278	214882
		60	206517	215121
		80	206756	215360
		100	206995	215599
		120	144377	215838
		140	207234	216077
		160	207712	216316
		180	207951	216555
		200	207190	216794

^{*} Cet ensemble se compose d'un dispositif de deux plaques métalliques inclinées pour le côté bâti et le côté porte.

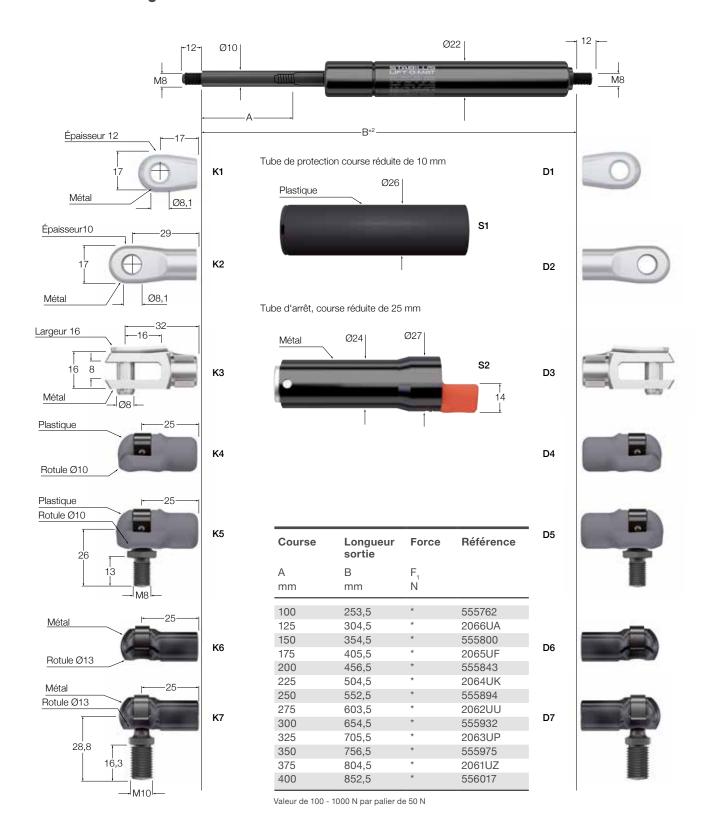
2.1.9 Ressorts à gaz Lift-O-Mat FR


Course	Longueur sortie	Force	Couverture l'ensemble	
Α	В	F₁	Blanc	Noir
mm	mm	N		
80	2465	40	207473	247386
		45	206517	215121
		50	206756	215360
		55	206995	215599
		60	144377	215838
		65	207234	216077
		70	207712	216316
		75	207951	216555
		85	207190	216794
		100	232329	249537
		105	232568	249776
		110	233046	250254
		115	233524	250493
		125	233763	250971
		135	234002	251210
		140	234241	251449

^{*} Cet ensemble se compose d'un dispositif de deux plaques métalliques inclinées pour le côté bâti et le côté porte.

2.1.10 Programme modulaire pour ressorts à gaz

Diamètre de tige 8 mm



Exemple de référence de commande

123456	0350N	K2	D1	S1
Référence produit	F ₁	Embout de la tige de piston	Embout du tube de pression	Tube en option

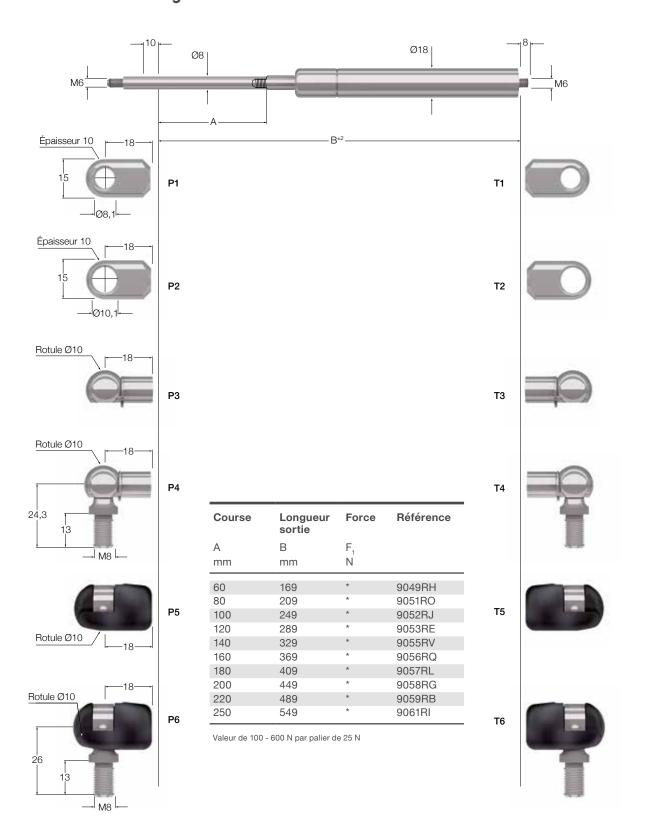
Diamètre de tige 10 mm



Exemple de référence de commande

123456	0350N	K2	D1	S1
Référence produit	F ₁	Embout de la tige de piston	Embout du tube de pression	Tube en option

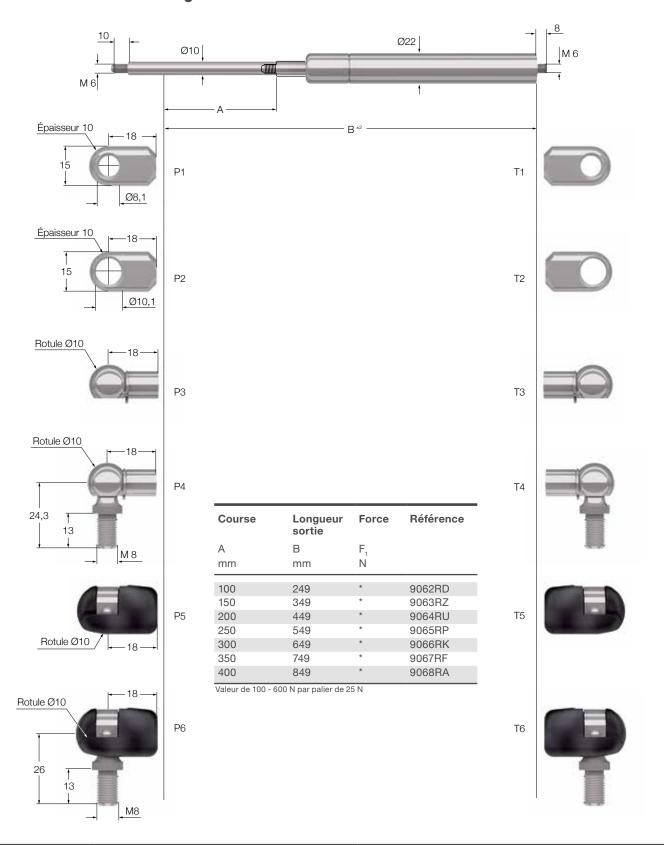
Diamètre de tige 14 mm



Exemple de référence de commande

123456	0350N	K2	D1	S1
Référence produit	F ₁	Embout de la tige de piston	Embout du tube de pression	Tube en option

Inoxline - Diamètre de tige 8 mm



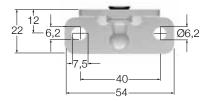
Exemple de référence de commande

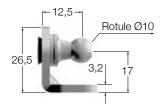
123456	0350N	P2	T1
Référence produit	F ₁	Embout de la tige de piston	Embout du tube de pression

Inoxline - Diamètre de tige 10 mm

Exemple de référence de commande

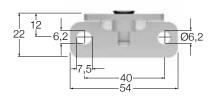
123456	0350N	K2	T1
Référence produit	F ₁	Embout de la tige de piston	Embout du tube de pression

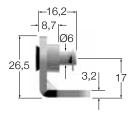

2.1.11 Accessoires


Selon les dimensions et le matériau de votre produit, les possibilités de fixation peuvent également varier. C'est pourquoi STABILUS IndustryLine propose une vaste gamme de supports adaptés.

Référence 8262WE

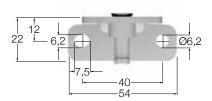
 $F_{max}^{*} = 1 000 N$

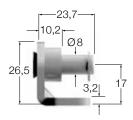




Référence 8267WG

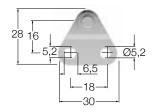
 $F_{max} = 700 \text{ N}$





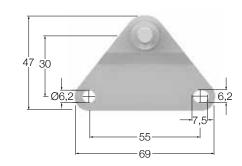
Référence 8268WG

 $F_{max}^{*} = 1 000 N$



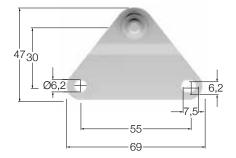
Référence 8268WB

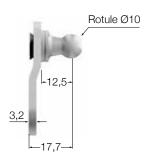
$$F_{max}^{*} = 700 \text{ N}$$


 $F_{\text{max}}^{\quad \ *}$ = force maximale admissible à 20 °C en position comprimée. Matière : acier, zinc plaqué

Référence 8264WW

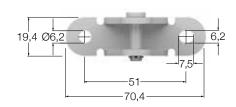
 $F_{max}^{*} = 1000 \text{ N}$

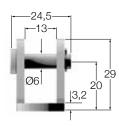




Référence 8265WQ

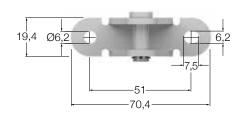
 $F_{max} = 1 \ 000 \ N$

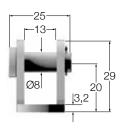




Référence 023189

 $F_{max}^{\ \ *} = 700 \text{ N}$





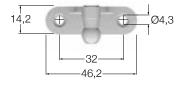
Référence 023083

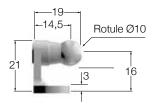
 $F_{max}^{*} = 1 600 N$

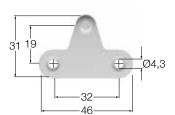
F_{max} * = force maximale admissible à 20 °C en position comprimée. Matière : acier, zinc plaqué

EWELLIX

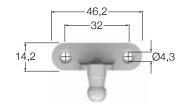
Référence 9222SJ

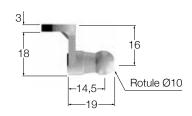

 $F_{\text{max}}^{\quad *} = 500 \text{ N}$




Référence 7592TM

 $F_{max}^{\ \ *} = 350 \text{ N}$





Référence 6284UG

 $F_{\text{max}}^{\quad *} = 500 \text{ N}$

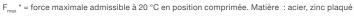
Rotule

4565BD

4486MD

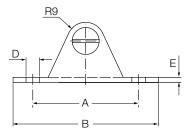
177583

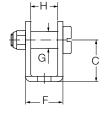
8442LT

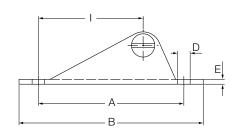


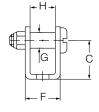
072796

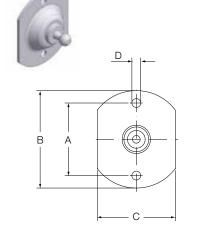
2054QF

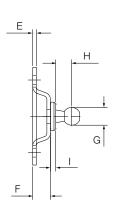


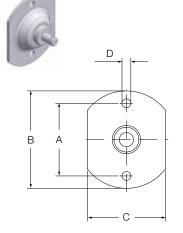

Supports pour ressorts à gaz et amortisseurs

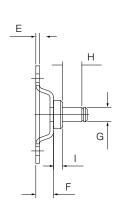

BC01 BC04



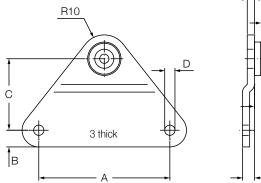


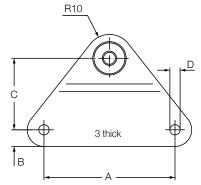


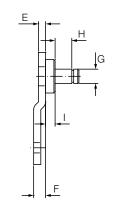


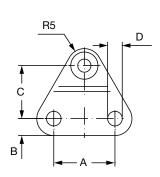

Туре	A mm	В	С	D	E	F	G	Н	ı	F _{max}	Acier	AISI 316L/Ti
BC01	51	70	20	6,5	2,5	18	8	13	-	1 800	-	_
BC04	75	95	20	6,5	2,5	18	8	13	54	1 800	-	-

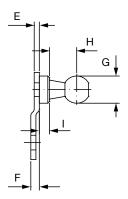
BA20/K BA20/Z

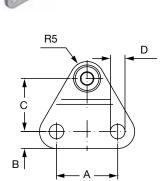

Туре	Α	В	С	D	Е	F	G	Н	ı	F _{max}	Acier	AISI 316L/Ti
	mm									N		
BA20/K08	41	55	44	5,3	2	10	8	8	1	500	-	_
BA20/K10	41	55	44	5,3	2	10	10	9	3	800	-	-
BA20/K13	41	55	44	5,3	2	10	13	9,5	3	1 200	-	-
BA20/Z06	41	55	44	5,3	2	10	6	7	4	500	-	-
BA20/Z08	41	55	44	5,3	2	10	8	11	5	1 200	-	-

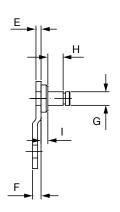

BA01/K

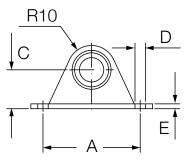


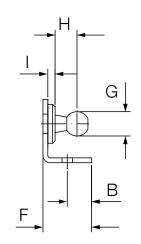


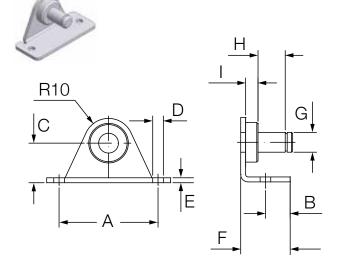

BB01/K

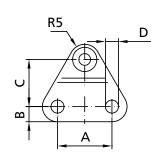

ĪG


BB01/Z

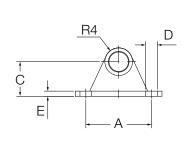

Туре	A mm	В	С	D	Е	F	G	Н	ı	F _{max}	Acier	AISI 316L/Ti
BB01/K08	18	5	15,5	4,5	1,5	2,5	6	8	3	180	_	_
BB01/Z04	18	5	15,5	4,5	1,5	2,5	4	4,5	2	180	-	_
BB01/Z06	18	5	15,5	4,5	1,5	2,5	6	6,5	4	180	-	_
BA01/K08	55	7	30	5,3	3	5	8	8	3	500	-	_
BA01/K10	55	7	30	5,3	3	5	10	8	3	800	-	_
BA01/K13	55	7	30	5,3	3	5	13	9,5	3	1 200	-	_
BA01/Z06	55	7	30	5,3	3	5	6	7	4	500	-	-
BA01/Z08	55	7	30	5,3	3	5	8	11	5	1 200	-	-

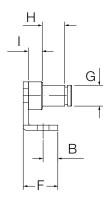






BB20/K

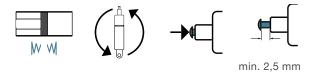

BB20/Z



Туре	A mm	В	С	D	E	F	G	Н	I	F _{max}	Acier	AISI 316L/Ti
BB20/K08	19	4,25	10	3,4	1,5	10	8	8	3	180	-	_
BB20/Z04	19	4,25	10	3,4	1,5	10	4	4,5	2	180	-	_
BB20/Z06	19	4,25	10	3,4	1,5	10	6	7	4	180	_	_
BA50/K08	40	10	16	5,3	2	20	8	8	3	500	-	_
BA50/K10	40	10	16	5,3	2	20	10	9	3	800	_	_
BA50/K13	40	10	16	5,3	2	20	13	9,5	3	1 200	-	-
BA50/Z06	40	10	16	5,3	2	20	6	7	4	500	-	-
BA50/Z08	40	10	16	5,3	2	20	8	11	5	1 200	-	-

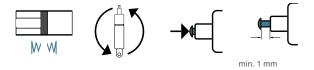
2.2. Ressorts à gaz Bloc-O-Lift

2.2.1 Blocage élastique - Diamètre de tige 8 mm


Course	Longue sortie	eur		Force	Référence
A mm	В	F _z N	$F_{\scriptscriptstyle D}$	F ₁	
20	179	1 000	13 000	200	684058
		1 500	12 500	250	733199
		2 000	12 000	300	733202
		2 500	11 500	350	733210
		3 000	10 500	400	733229
		4 000	9 500	500	670138
		5 000	8 000	600	733237
		4 000	5 500	800	693391
		1 000	3 000	1 000	733245
25	190	1 000	13 000	200	684066
		1 500	12 500	250	733253
		2 000	12 000	300	733261
		2 500	11 500	350	733288
		3 000	10 500	400	733296
		4 000	9 500	500	693405
		5 000	8 000	600	733318
		3 500	5 500	800	693413
		500	2 500	1 000	733326
30	204	1 000	13 000	200	684074
		1 500	12 500	250	733334
		2 000	12 000	300	733342
		2 500	11 500	350	733350
		3 000	10 500	400	733369
		4 000	9 000	500	693421
		5 000	8 000	600	733377
		3 500	5 000	800	693448
40	226	1 000	13 000	200	684082
		1 500	12 500	250	733393
		2 000	12 000	300	733407
		2 500	11 000	350	733415
		3 000	10 500	400	733423
		4 000	9 000	500	693456
		5 000	8 000	600	733431
		3 000	5 000	800	693464

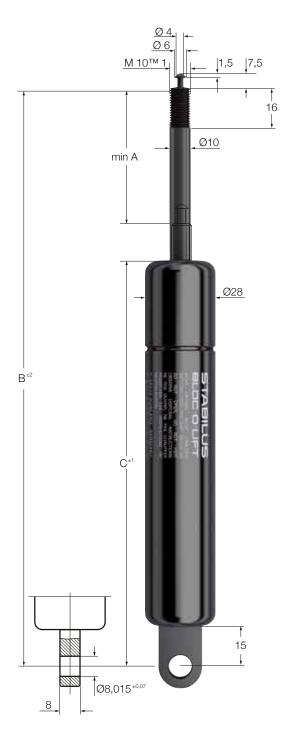
 $^{{\}sf F_{\sf Z}}\,$: Force de blocage en compression [N]

F_D: Force de blocage en traction [N]


2.2.2 Blocage élastique - Diamètre de tige 10 mm

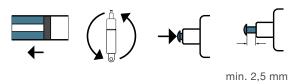
Cauraa	Language	Language	Гакаа	Dáfáranas
Course	Longueur sortie	Longueur du tube de pression	Force	Référence
A mm	В	С	F ₁	
20	149,5	111,5	300	670685
			350	728543
			400	728594
			500	670626
			600	728640
			800	691860
			1 000	728659
			1 200	728667
25	157,5	116,5	250	681830
			300	728675
			350	728683
			400	728705
			500	691879
			600	728713
			800	691887
			1 000	728721
			1 200	728748
30	168,5	121,5	250	681849
			300	728756
			350	728764
			400	728772
			500	691895
			600	728780
			800	691909
30	168,5	121,5	1 000	728799
			1 200	728802
40	187,5	131,5	200	681857
	,	•	250	728810
			300	728829
			350	728837
			400	728845
			500	691917
			600	728853
			800	691925
			1 000	728861
			1 200	728888
			. ===	

Course	Longueur sortie	Longueur du tube de pression	Force	Référence
Α	В	С	F ₁	
mm			N	
20	149,5	111,5	300	681954
			350	729892
			400	729906
			500	692263
			600	729914
			800	692271
			1000	729922
			1200	729930
25	157,5	116,5	250	681962
	,.	, .	300	729949
			350	729957
			400	729965
			500	692298
			600	729981
			800	692301
			1000	730009
			1200	730017
30	168,5	121,5	250	681970
	,.	,-	300	730025
			350	730033
			400	730041
			500	692328
			600	730068
			800	692336
			1000	730076
			1200	730084
40	187,5	131,5	200	681989
. 3	701,0	.51,0	250	730092
			300	730106
			350	730114
			400	730122
			500	692344
			600	730130
			800	692352
			1000	730149
			1200	730157
			1200	100101


min. 2,5 mm

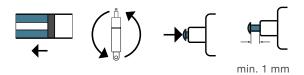
Course	Longueur sortie	Longueur du tube de pression	Force	Référence
A mm	В	С	F ₁	
60	228	151,5	200	681865
			250	729345
			300	729353
			350	729361
			400	729388
			500	691933
			600	729396
			800	691941
			1 000	729418
			1 200	729426
80	269	171,5	200	681946
			250	729434
			300	729442
			350	729450
			400	729469
			500	691968
			600	729477
			800	691976
			1 000	729485
			1 200	729493
100	310	191,5	200	681873
			250	729507
			300	729515
			350	729523
			400	729531
			500	691984
			600	729558
			800	691992
			1 000	729566
100	0.40	011 5	1 200	729574
120	348	211,5	200 250	681881 729582
			300	729590
			350	729604
			400	729612
			500	692018
			600	729620
			800	692026
			1 000	729639
			1 200	729647
160	430	251,5	200	681903
		,-	250	729655
			300	729663
			350	729671
			400	729698
			500	692034
			600	729701
			800	692212
			1000	729728
			1200	729736

Course	Longueur sortie	Longueur du tube de pression	Force	Référence
A mm	В	С	F ₁	
			1200	729736
200	509	291,5	200	681911
		,-	250	729744
			300	729752
			350	729760
			400	729779
			500	692220
			600	729787
			800	692239
			1000	729795
			1200	729809
250	610	341,5	200	681938
			250	729817
			300	729825
			350	729833
			400	729841
			500	692247
			600	729868
			800	692255
			1000	729876
			1200	729884



Course	Longueur sortie	Longu du tub pressi	e de			Référence
A mm	В	С	F ₁	F _z	F _D	
19,5	164,5	127	400	9 500	2 000	2691 HR
			500	8 500	2 500	2694 HC
			600	7 500	3 000	2696 HT
			800	5 500	4 000	2698 HJ
			1 000	3 500	5 000	2721 HZ
			1 200	2 000	6 000	2723 HP
25,5	177,5	134	400	9 000	2 000	2727 HW
			500	8 000	2 500	2731 HT
			600	7 000	3 000	2733 HJ
			800	5 500	4 000	2736 HV
			1 000	3 000	5 000	2738 HL
			1 200	1 000	6 000	2741 HN
31,5	192,5	143	300	10 000	1 000	2745 HU
			400	9 000	2 000	2748 HF
			500	8 000	2 500	2751 HH
			600	7 000	3 000	2753 HY
			800	5 000	4 000	2611 HL
			1 000	3 000	5 000	2776 HY
40,5	212,5	154	300	10 000	1 000	2787 HN
			400	9 000	2 000	2791 HK
			500	8 000	2 500	2793 HA
40,5	212,5	154	600	7000	3000	2803HU
			800	5000	4000	2805HK
			1000	2500	5000	2807HA

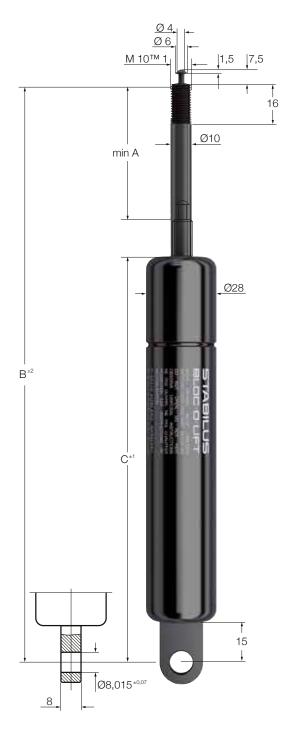
2.2.3 Blocage rigide ec extension - Diamètre de tige 10 mm



Course	Longueur sortie	Longueur du tube de pression		Force		Référence
A mm	В	С	F ₁	F _z	F _D	
19,5	164,5	127	400	9 500	2 000	2691 HR
			500	8 500	2 500	2694 HC
			600	7 500	3 000	2696 HT
			800	5 500	4 000	2698 HJ
			1 000	3 500	5 000	2721 HZ
			1 200	2 000	6 000	2723 HP
25,5	177,5	134	400	9 000	2 000	2727 HW
			500	8 000	2 500	2731 HT
			600	7 000	3 000	2733 HJ
			800	5 500	4 000	2736 HV
			1 000	3 000	5 000	2738 HL
			1 200	1 000	6 000	2741 HN
31,5	192,5	143	300	10 000	1 000	2745 HU
			400	9 000	2 000	2748 HF
			500	8 000	2 500	2751 HH
			600	7 000	3 000	2753 HY
			800	5 000	4 000	2611 HL
			1 000	3 000	5 000	2776 HY
40,5	212,5	154	300	10 000	1 000	2787 HN
			400	9 000	2 000	2791 HK
			500	8 000	2 500	2793 HA
40,5	212,5	154	600	7 000	3 000	2803HU
			800	5 000	4 000	2805HK
			1 000	2 500	5 000	2807HA

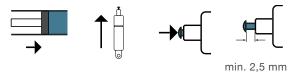
F_z: Force de blocage en compression [N]

 $[\]overline{F_{_D}}$: Force de blocage en traction [N]

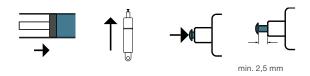


Course	Longueur sortie	Longu tube d pressi	-	Force		Référence
A mm	В	F _z N	F _D N	F _z N	F _D	
19,5	164,5	127	400	4500	2000	5139 HY
			500	5500	2500	5144 HQ
			600	7000	3000	5146 HG
			800	6000	4000	5148 HX
			1000	4000	5000	5151 HZ
			1200	2000	6000	5153 HP
25,5	177,5	134	400	4500	2000	5157 HW
			500	6000	2500	5169 HG
			600	7000	3000	5172 HI
			800	5500	4000	5174 HZ
			1000	3500	5000	5176 HP
			1200	1500	6000	5178 HF
31,5	192,5	143	300	3500	1000	5183 HY
			400	5000	2000	5186 HJ
			500	6000	2500	5189 HV
			600	7000	3000	5192 HX
			800	5500	4000	5194 HN
			1000	3500	5000	5196 HD
			1200	1500	6000	5198 HU
40,5	212,5	154	300	4000	1000	5203 HL
			400	5000	2000	5206 HX
			500	6500	2500	5208 HN
40,5	212,5	154	600	7000	3000	5211 HP
			800	5000	4000	5213 HF
			1000	2500	5000	5215 HW

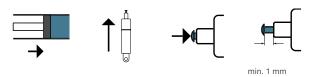
Course	Longueur sortie	Longu tube of press		Force		Référence
A mm	В	F _z [N]	F _D [N]	F _z N	F _D	
60,0	265,0	187	300	10 000	1 000	5219 HC
			400	9 000	2 000	5224 HV
			500	8 000	2 500	5226 HL
			600	7 000	3 000	5228 HB
			800	4 500	4000	5231 HD
			1 000	2 500	5 000	5233 HU
81,0	310,0	211	200	10 500	900	2784 HB
			300	9 500	1 000	5238 HW
			400	8 500	2 000	5241 HY
			500	7 500	2 500	5243 HO
			600	6 500	3 000	5245 HE
			800	4 000	4 000	5248 HQ
			1 000	1 500	5 000	5251 HS
100,5	370,5	252	200	10 500	9 00	5255 HZ
			300	9 500	1 000	5258 HK
			400	8 500	2 000	5261 HM
			500	7 000	2 500	5263 HC
			600	6 000	3 000	5265 HT
			800	3 500	4 000	5267 HJ
121,5	420,5	281	200	10 500	900	5273 HX
			300	9 500	1 000	5281 HA
			400	8 000	2 000	5283 HR
			500	7 000	2 500	5285 HH
			600	6 000	3 000	5287 HY
			800	3 500	4 000	5289 HO
160,5	510,5	332	200	10 500	900	5294 HG
			300	9 000	1 000	5297 HS
			400	8 000	2 000	5299 HI
			500	7 000	2 500	5302 HJ
			600	5 500	3 000	5311 HI
100 5			800	3 000	4 000	5313 HZ
199,5	600,5	383	200	10500	900	5317 HF
			300	9000	1000	5321 HC
			400	8000	2000	5323 HT
			500	6500	2500	5325 HJ
			600	5500	3000	5328 HV
			800	2500	4000	5331 HX
			800	2500	4000	5331 HX



Course	Longueur sortie	Longu tube d pressi		Force		Référence
A mm	В	F _z N	F _D N	F _z N	F _D	
60,0	265,0	187	200	2500	900	5352 HG
			300	4000	1000	5355 HS
			400	5000	2000	5357 HI
			500	6500	2500	5359 HZ
			600	7000	3000	5362 HA
			800	5000	4000	5364 HR
			1000	2500	5000	5366 HH
100,5	370,5	252	200	3000	900	5372 HV
			300	4500	1000	5375 HG
			400	6000	2000	5377 HX
			500	7000	2500	5379 HN
			600	6000	3000	5382 HP
			800	4000	4000	5384 HF
160,5	510,5	332	200	3000	900	5388 HM
			300	4500	1000	5392 HJ
			400	6000	2000	5395 HV
			500	7000	2500	5397 HL
			600	6000	3000	5399 HB
			800	3000	4000	5402 HC
250,5	730,5	462	200	3000	900	5406 HJ
			300	4500	1000	5411 HB
			400	6000	2000	5413 HS
250,5	730,5	462	500	7000	2500	5415 HI
			600	6000	3000	5417 HZ
			800	3000	4000	5419 HP

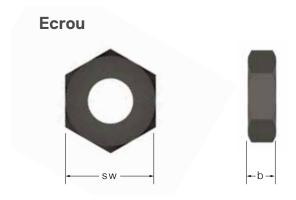

2.2.4 Blocage rigide en compression - Diamètre de tige 10 mm

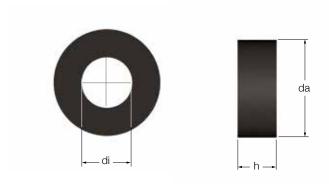
Course	Longueur sortie	Longu tube d pressi		Force		Référence
A mm	В	F _z N	F _D N	F _z N	F _D	
20	179	141	200	1000	13000	684058
			250	1500	12500	733199
			300	2000	12000	733202
			350	2500	11500	733210
			400	3000	10500	733229
			500	4000	9500	670138
			600	5000	8000	733237
			800	4000	5500	693391
			1000	1000	3000	733245
25	190	147	200	1000	13000	684066
			250	1500	12500	733253
			300	2000	12000	733261
			350	2500	11500	733288
			400	3000	10500	733296
			500	4000	9500	693405
			600	5000	8000	733318
			800	3500	5500	693413
			1000	500	2500	733326
30	204	156	200	1000	13000	684074
			250	1500	12500	733334
			300	2000	12000	733342
			350	2500	11500	733350
			400	3000	10500	733369
			500	4000	9000	693421
			600	5000	8000	733377
			800	3500	5000	693448
40	226	170	200	1000	13000	684082
			250	1500	12500	733393
			300	2000	12000	733407
			350	2500	11000	733415
			400	3000	10500	733423
			500	4000	9000	693456
			600	5000	8000	733431
	1	,	800	3000	5000	693464



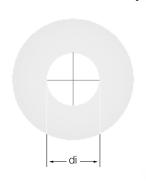


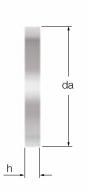
	Т				ı	
Course	Longueur sortie	tube d pressi		Force		Référence
A mm	В	F _z N	$F_{_{D}}$	F _z N	$F_{\scriptscriptstyle D}$	
20	191,5	153,5	500	2 500	12 000	670669
	- ,-	, -	600	3 000	11 000	
			800	4 000	9 000	693278
			1 000	5 000	8 000	732869
			1 200	3 500	6 500	732877
25	205,5	163,5	400	2 000	12 500	682764
			500	2 500	12 000	693286
			600	3 000	11 000	732885
			800	4 000	9 500	693294
			1 000	5 000	8 000	732893
		.=	1 200	3 500	6 500	767689
30	219,5	173,5	350	1 500	13 000	682772
			400	2 000	12 500	732907
			500	2 500	11 500	693308
			600	3 000	10 500	732915
			800	4 000	9 000	693316
			1 000	4 500	7 000	732923
40	041 5	1015	1 200	2 500	5 500	732931 682799
40	241,5	184,5	350	1 500	12 500	732958
			400	2 000	12 000	
			500	2 500	11 000	693324
			600 800	3 000	10 000 8 500	732966 693332
			1 000	3 500	6 500	732974
80	350,5	253,5	200	500	13 500	682802
00	330,3	200,0	250	1 000	13 500	732982
			400	2 000	12 000	733016
			350	1 500	12 500	733008
			400	2 000	12 000	733016
			500	2 500	11 000	670677
			600	3 000	10 000	
			800	4 000	8 000	693340
			1 000	3 000	6 000	733032
100	400,5	284,5	200	500	13 500	682810
	,.		250	1 000	13 000	733040
			300	1 000	12 500	733059
			350	1 500	12 000	733067
			400	2 000	12 000	733075
			500	2 500	11 000	693359
			600	3 000	10 000	733105
			800	4 000	7 500	693367
			1 000	2 500	5 500	733113
120	450,5	313,5	200	500	13 500	684023
			250	1 000	13 000	733121
			300	1 000	12 500	733148
			350	1 500	12 000	733156
			400	2 000	11500	733164
			500	2 500	10 500	693375
			600	3 000	9 500	733172
			800	4 000	7 500	693383
			1 000	2 000	5 000	733180



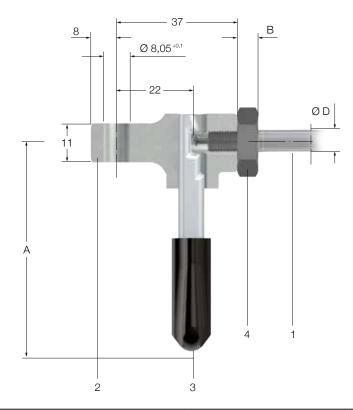


2.2.5 Accessories

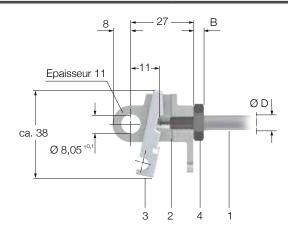

Filet	b mm	SW	Référence
M 8 TM 1 M 10 TM 1	5	13	012483
	6	17	012491


Rondelle caoutchouc

Calibre			Référence
di mm	da	h	
8	20	8	269069
10	20	4	036862
10	20	8	036854

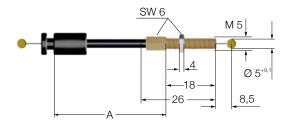

Rondelle métallique

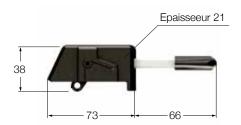
Calibre			Référence
di	da	h	
mm			
8	19	3	023582
10	24	3	363979


1 Bloc-O-Lift		
Ø D tige	Ø 8 mm	Ø 10 mm
Filetage tige	M 8 TM 1	M 10 ™ 1
Course de déclenchement	1 mm	1 mm
Largeur B	5 mm	6 mm
2 Tête de déclenchement		
Tête de déclenchement avec levier	9102 GW	130850
Tête de déclenchement avec levier pour déclenchement permanent	0516 CC	271985
3 Levier de déclenchement Longueur		
A = 64	992259	992259
A = 104	1041 BN	1041 BN
A = 122	132543	132543
A = 167	065056	065056
A = 196	125466	125466
4 Ecrou	012483	012491

Tête de déclenchement convenable à tous les Bloc-O-Lift de notre programme standard avec course de déclenchement 1 mm.

Faites attention aux instructions de montage des têtes de déclenchement Bloc-O-Lift.


STAB-Spec. 1000 5725


1 Bloc-O-Lift		
Ø D tige	Ø 8 mm	Ø 10 mm
Filetage tige	M 8 [™] 1	M 10 ™ 1
Largeur B	5 mm	6 mm
2 Tête de déclenchement	983918	784575
3 Levier de déclenchement Longueur	783234	783234
4 Ecrou	012483	012491

Tête de déclenchement convenable à tous les Bloc-O-Lift de notre programme standard. Faites attention aux instructions de montage des têtes de déclenchement Bloc-O-Lift. STAB-Spec 1000 6476 et STAB-Spec 1000 5635.

A Longueur du câble Bowden	Référence No.
200	0345 BH
300	878189
400	7605 AV
500	0346 BC
600	0347 BY
700	5240 AD
800	0304 BJ
900	0298 BX
1000	0305 BE

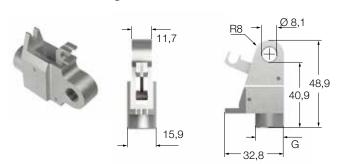
Pour un mécanisme de déclenchement avec un câble bowden plus long que 400 mm un Bloc-O-Lift avec course de déclenchement 1 mm est nécessaire.

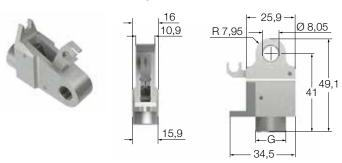
Mécanisme de déclenchement	Référence No.
	1044 BZ

2.2.6 Systèmes de déclenchement mécaniques extrêmement pratiques

Combinés aux ressorts à gaz Bloc-O-Lift, les Soft-O-Touch de STABILUS facilitent le levage, la descente, et le réglage.

Notre gamme Soft-O-Touch offre des systèmes complets de déclenchement pour les ressorts à gaz STABILUS Bloc-O-Lift.

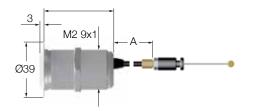

Les ressorts à gaz Bloc-O-Lift difficilement accessibles peuvent être connectés au moyen de câbles Bowden pré-réglés à des boutons-poussoirs installés à l'endroit le plus approprié pour votre application. Des têtes de déclenchement parfaitement adaptées permettent d'actionner facilement ces boutons-poussoirs ergonomiques.


Grâce à des matériaux de qualité et un design attractif, ils s'utilisent dans des applications haut de gamme variées dans de nombreux secteurs industriels : meubles, équipements médicaux, sièges automobiles et, plus largement, ingénierie mécanique. Le choix de boutons, avec configurations de câbles Bowden axiales et latérales, offre de nombreuses possibilités au sein de votre application.

Résultat : un haut niveau de fonctionnalité qui confère encore plus de valeur à vos produits.

Têtes de déclenchement

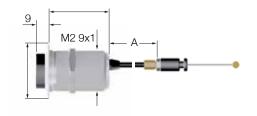
Déclenchement léger


Force F ₁ N	G Filetage	Référence
Pour ressorts à gaz Bloc-O-Lift jusqu'à $F_1 = 500$ N et des courses de déclenchement jusqu'à 2,5 mm	M 8 x 1	075291
	M 10 x 1	006837
Pour ressorts à gaz Bloc-O-Lift jusqu'à F, = 1000 N et des courses de déclenchement jusqu'à 1 mm	M 8 x 1	074574
	M 10 x 1	112485

Boutons-poussoirs

Matériau / Couleur	Têtes de déclenchement compatibles	A Longueur de câble Bowden	Référence	
		mm		

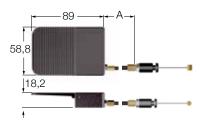
Bouton poussoir affleurant avec sortie de câble Bowden axiale


Bouton : plastique, noir	075291 (M 8 x 1) 006837 (M 10 x 1)	500 750 1000	076964 080310 081983
Boîtier : aluminium, argent	074574 (M 8 x 1) 112485 (M 10 x 1)	500 750 1000	481829 069555 073140

Bouton poussoir affleurant avec sortie de câble Bowden latérale

Bouton : plastique, noir	075291 (M 8 x 1) 006837 (M 10 x 1)	500 750 1000	075052 080788 082222
Boîtier : aluminium, argent	074574 (M 8 x 1) 112485 (10M x 1)	500 750 1000	068599 069794 073379

Bouton poussoir saillant avec sortie de câble Bowden axiale

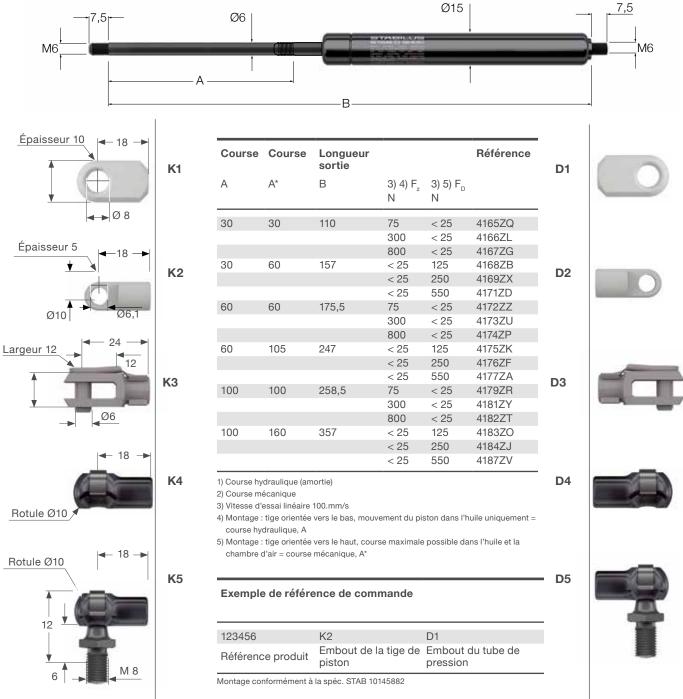

Bouton : plastique, noir	074574 (M 8 x 1) 006837 (M 10 x 1)	500 750 1000	077681 081266 082461
Boîtier : aluminium, argent	074574 (M 8 x 1) 112485 (M 10 x 1)	500 750 1000	069077 070272 074096

Bouton poussoir saillant avec sortie de câble Bowden latérale

Bouton : plastique, noir	075291 (M 8 x 1) 006837 (M 10 x 1)	500 750 1000	079354 081505 082700
Boîtier : aluminium, argent	074574 (M 8 x 1) 112485 (M 10 x 1)	500 750 1000	069316 072901 074813

Levier plat

Levier : zinc moulé sous pression, noir	075291 (M 8 x 1) 006837 (M 10 x 1)	500 750 1000	088197 088675 104927
Boîtier : plastique, noir	074574 (M 8 x 1) 112485 (M 10 x 1)	500 750 1000	068838 088436 105166

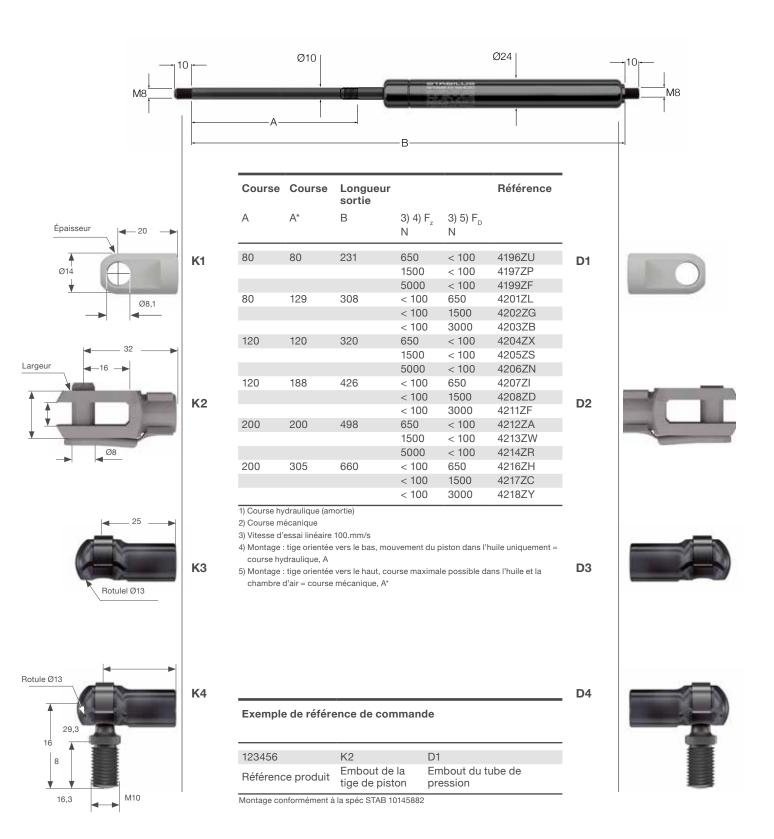


2.3. Amortisseurs hydrauliques Stab-O-Shoc

2.3.1 Stab-O-Shoc HD15

Amortisseurs pour faibles forces d'amortissement

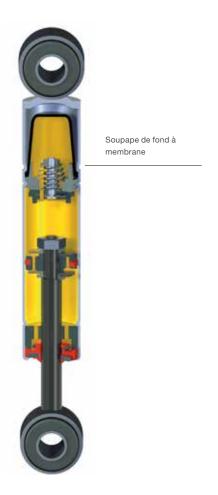
Le Stab-O-Shoc HD15 standard est un amortisseur non pressurisé. L'orientation du montage est déterminante. Pour un fonctionnement optimal, l'amortisseur doit être installé pratiquement à la verticale avec une transmission de la force sans course à vide dans une seule direction. Des variantes spéciales pour montage à l'horizontale sont également possibles, de même que des modèles avec assistance en extension ou amortissement en fonction de la trajectoire.



2.3.2 Stab-O-Shoc HD24

Amortisseurs pour forces élevées

Le Stab-O-Shoc HD24 de STABILUS est un amortisseur de vibrations standard à simple tube adapté à de nombreuses applications, particulièrement en présence de charges élevées. Doté d'un système de piston spécial à clapet et avec une base de différentes sections, il est idéal pour amortir le mouvement.


2.3.3 Stab-O-Shoc HD24 MB

Amortisseur avec soupape de fond et membrane

Le Stab-O-Shoc HD24 MB est un amortisseur de vibrations doté d'une soupape de fond et d'une membrane.

La membrane dans le tube de pression permet de combiner les avantages offerts par la soupape de fond avec la possibilité d'un montage dans n'importe quel sens. L'amortisseur n'étant pas pressurisé, la tige du piston reste dans le tube de pression. L'absence de course à vide signifie que l'amortissement se déclenche instantanément.

1) A	В			
Course	Longueur sortie	3) 4) F _z N	3) 5) F _D N	Référence
30	213,5	100	100	2529YM
		400	400	2546YP
		1000	1000	2548YF
60	273,5	100	100	2598YC
		400	400	2602YZ
		1000	1000	2611YY

¹⁾ Vitesse d'essai 104 mm/s

Test de la manivelle: course d'essai 20 mm/ Vitesse d'essai 100 tr/m

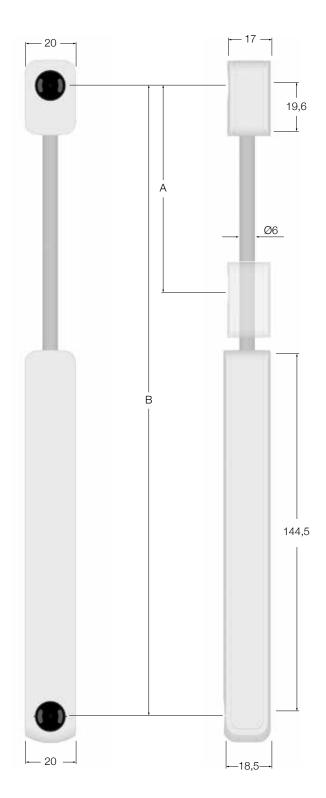
Montage conformément à la spéc. STAB 10005593 Mise au rebut conformément à la spéc. STAB 10009375

²⁾ Sens de montage indifférent.

2.3.4 Stab-O-Shoc TA20

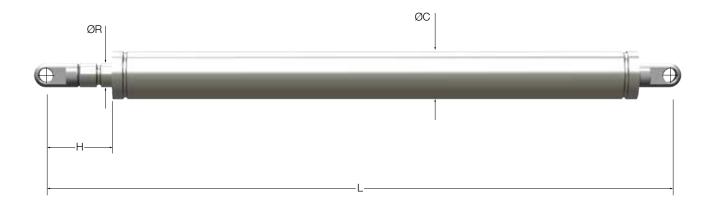
Amortisseurs avec système de piston spécial

Dans le Stab-O-Shoc TA20, la membrane située sur l'extérieur du tube de pression a pour fonction d'absorber le volume résiduel pour minimiser la longueur totale.


Il en résulte une transmission de la force sans glissement quelle que soit l'orientation du montage. Grâce au système de piston spécial à soupape, les forces d'amortissement peuvent être réglées de façon variable et indépendamment l'une de l'autre. Cet amortisseur n'est pas pressurisé lui non-plus et l'amortissement est instantané.

Course	Longueur sortie	Longueur du tube d pression		Force		Référence
A mm	В	С	F ₁	F _z	F _D	
9,5	164,5	127	400	9500	2000	2691 HR
			500	8500	2500	2694 HC
			600	7500	3000	2696 HT
			800	5500	4000	2698 HJ
			1000	3500	5000	2721 HZ
			1200	2000	6000	2723 HP
25,5	177,5	134	400	9000	2000	2727 HW
			500	8000	2500	2731 HT
			600	7000	3000	2733 HJ
			800	5500	4000	2736 HV
			1000	3000	5000	2738 HL
			1200	1000	6000	2741 HN
31,5	192,5	143	300	10000	1000	2745 HU
			400	9000	2000	2748 HF
			500	8000	2500	2751 HH
			600	7000	3000	2753 HY
			800	5000	4000	2611 HL
			1000	3000	5000	2776 HY
40,5	212,5	154	300	10000	1000	2787 HN
			400	9000	2000	2791 HK
			500	8000	2500	2793 HA
			600	7000	3000	2803 HJ
			800	5000	4000	2805 HK
			1000	2500	5000	2807 HA

2.3.5 Stab-O-Shoc UC


Course	Longueur sortie	Couverture de l'ensemble*				
A mm	В	Blanc	Noir			
67,5	235	155132	160868			

^{*} Cet ensemble se compose d'un dispositif de deux plaques métalliques inclinées pour le côté bâti et le côté porte.

2.4. Ressorts à gaz IndustryLine

2.4.1 Ressorts à gaz en traction

Gamme de ressorts en traction STABILUS IndustryLine

	R	С	Н	L							
Туре	Ø tige	Ø tube	Course standard	Longueur de traction	Force	Progression	Tige filetée	Tube filetée	Acier	AISI 303/304	AISI 316L/316Ti
	mm	1		_	N						
Z 04-15	4	15	20 – 200	2 x course + 63	50 – 300	22 %	M 3.5	M 3.5	-	-	-
Z 06-19	6	19	30 - 400	2 x course + 100	30 – 350	29 %	M 5	M 5	-	-	_
Z 10-28	10	28	60 – 600	2 x course + 100	150 – 1200	20 %	M 8	M 8	-	-	_
Z 10-40	10	40	10 – 590	2 x course + 150	200 - 2000	78 %	M 14x1,5	M 14x1.5	-	-	_
Z 28-40	28	40	50 – 700	2,5 x course + 125	500 – 5000	40 %	M 14x1,5	M 14x1.5	-	-	o/r

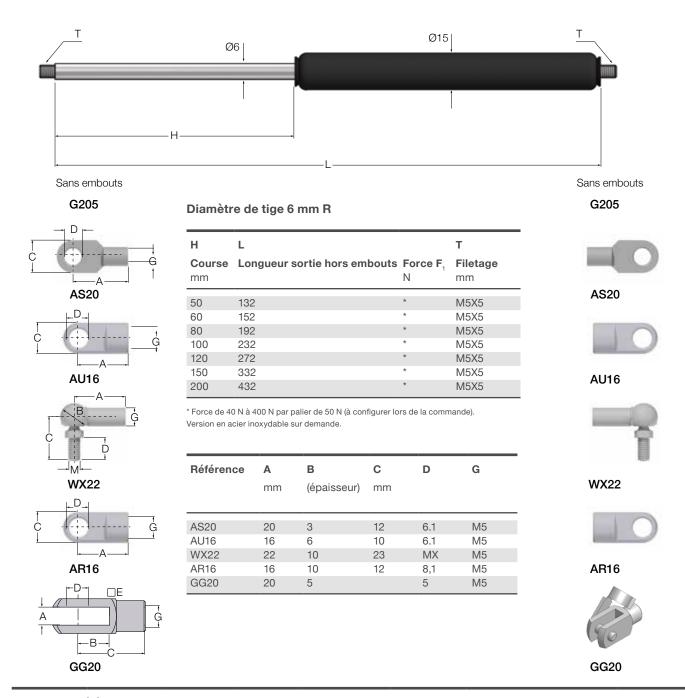
Ressort en traction avec amortissement

	R	С	н	L							
Туре	Ø tige mm	Ø tube	Course standard	Longueur de traction -	Force N	Progression	Tige filetée	Tube filetée	Acier	AISI 303/304	AISI 316L/316Ti
ZD 10-28	10	28	20 – 600	3 x course + 90	100 – 1200	36 %	M 8	M 8	-	o/r	o/r

2.4.2 Ressorts à gaz double course

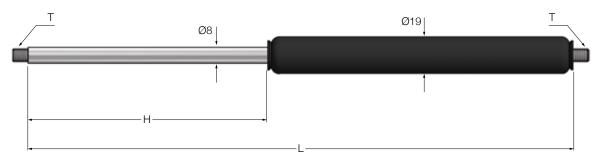
Туре	Ø tige	Course	Longueur au besoin	Force	Filetage du piston et du cylindre	Acier	AISI 303/304	AISI 316L/316Ti
	mm		_	N				
G 02-06	2	5 - 50	2 x course + 20	5 - 40	M 2		-	
G 03-08	3	10 - 80	2 x course + 32	5 - 100	M 3.5		_	
G 03-10	3	10 - 80	2 x course + 32	5 - 100	M 3.5		_	
G 04-12	4	30 - 180	2 x course + 32	10 - 180	M 3.5		_	
G 06-15	6	20 - 300	2 x course + 55	40 - 400	M 5			
G 06-19	6	20 - 300	2 x course + 55	40 - 400	M 5			o.r.
G 08-19	8	40 - 500	2 x course + 70	50 - 700	M 8			
G 08-23	8	40 - 500	2 x course + 70	50 - 700	M 8		o.r.	o.r.
G 10-23	10	40 - 500	2 x course + 70	100 - 1200	M 8			
G 10-28	10	40 - 500	2 x course + 70	100 - 1200	M 8			
G 10-40	10	30 - 500	2 x course + 100	150 - 1200	M 8			
G 14-28	14	50 - 600	2 x course + 107	150 - 2500	M 10			
G 14-40	14	50 - 600	2 x course + 100	150 - 2500	M 10			o.r.
G 20-40	20	50 - 600	3 x course + 138	300 - 5000	M 14 x 1.5			
G 22-40	22	50 - 1000	3 x course + 138	500 - 6000	M 14 x 1.5			_
G 25-55	25	100 - 1000	4 x course + 140	500 - 7500	M 20 x 1.5		_	_

Autres possibilités sur demande :

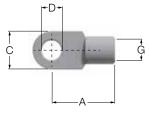

- Course de 5 mm à 1 m
- Tige de 2 mm à 35 mm
- Force de 5 à 10 000 N
- Températures de -40 °C à +200 °C
- · Possibilité de déclenchement hydraulique
- · Vitesses de déclenchement élevées

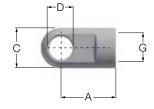
2.4.3 Programme de regonflage Stab-O-Fast

Stab-O-Fast: la gamme de ressorts à gaz configurables avec service de livraison rapide. Idéale pour un dépannage rapide sur de petites quantités (jusqu'à 10 pièces). La Gamme Stab-O-Fast couvre plus 5 000 références alternatives à la gamme Lift-O-Mat (en version acier et acier inoxydable)

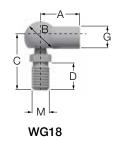

Avec le configurateur Stab-O-Fast, définissez votre ressort à gaz et recevez votre article dans les 48 heures.

Exemple de référence de commande


Ressort à gaz	Ø tige	Ø de tube	Course	Avec amortissement	Embout côté tige	Embout côté tube	Force (N)	Valve
G	06	15	100	1	AS20	GZ07	0150N	5



Sans embouts


GZ10

AS30

AU19

Diamètre de tige 8 mm R

Н	L		т
Course mm	Longueur sortie hors embouts	Force F ₁	Filetage mm
50	145	*	M8x10
60	165	*	M8x10
80	205	*	M8x10
100	245	*	M8x10
120	285	*	M8x10
150	345	*	M8x10
200	445	*	M8x10
250	545	*	M8x10
300	645	*	M8x10

 * Force de 50 N à 700 N par palier de 50 N (à configurer lors de la commande). Version en acier inoxydable sur demande.

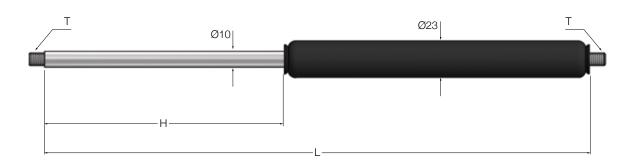
Référence	Α	В	С	D	G
	mm	(épaisseur)	mm		

AS30	30	5	18	8.1	M8
AU19	19	10	14	6.1	M8
VG18	18	10	23	M8x12	M8
AU19	19	10	14	8,1	M8
AR16	16	10	15	8,1	M8
AR19	19	10	15	8,1	M8
AR27	27	10	15	8,1	M8
AR19	19	10	15	10,1	M8
WG30	30	13	29	M8x16	M8
PF30	30	13	-	M8x16	M8
GG32	32		32	8	M8

Sans embouts

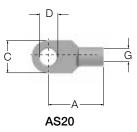
AS30

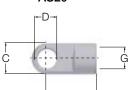
AU19

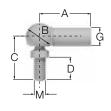


WG18

Exemple de référence de commande


G	08	19	120	1	AS30	GZ10	0150N	5
Ressort à gaz	Ø tige	Ø de tube	Course	Avec amortissement	Embout côté tige	Embout côté tube	Force (N)	Valve




Sans embouts

G210

WX22

Diamètre de tige 10 mm R

Н	L		Т
Course	Longueur sortie hors embouts	Force F	Filetage
mm		N	mm
100	245	*	M8x10
150	345	*	M8x10
200	445	*	M8x10
250	545	*	M8x10
300	645	*	M8x10
350	745	*	M8x10
400	845	*	M8x10

 $^{^{\}ast}$ Force de 50 N à 1 200 N par palier de 50 N (à configurer lors de la commande). Version en acier inoxydable sur demande.

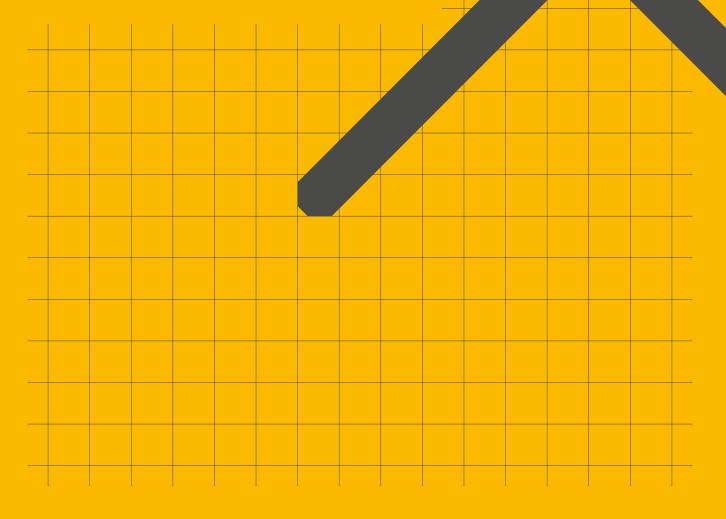
Référence	A mm	B (épaisseur)	C mm	D	G
AS30	30	5	18	8.1	M8
AU19	19	10	14	6.1	M8
WG18	18	10	23	M8x12	M8
AU19	19	10	14	8,1	M8
AR16	16	10	15	8,1	M8
AR19	19	10	15	8,1	M8
AR27	27	10	15	8,1	M8
AR19	19	10	15	10,1	M8
WG30	30	13	29	M8x16	M8
PF30	30	13	-	M8x16	M8
GG32	32		32	8	M8

Sans embouts

G210

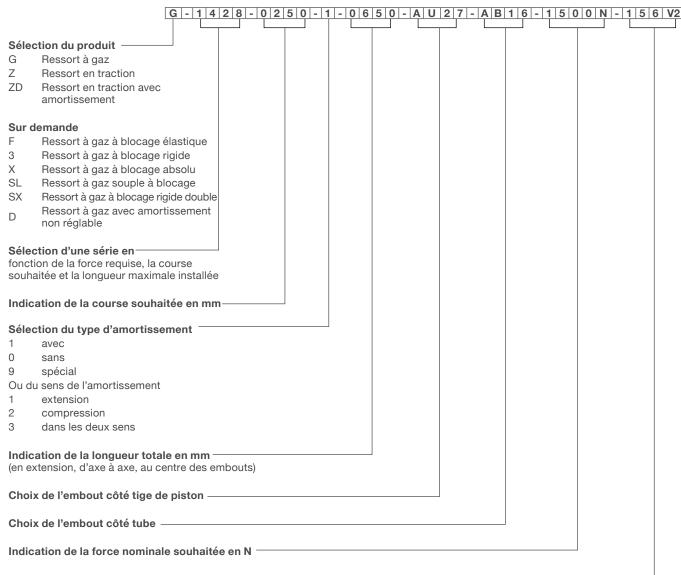
AS20


AU16


WX22

Exemple de référence de commande

G	10	23	250	1	AS30	GZ10	0450N	5
Ressort à gaz	Ø tige	Ø de tube	Course	Avec amortissement	Embout côté tige	Embout côté tube	Force (N)	Valve


Clé de commande

3.1. Clé de commande

Clé de commande

Sélection des options

- Racleur de tige
- 2 Valve radiale
- 3 Chambre d'huile
- 4 Valve
- 5 Tube de protection
- 6 Piston flottant (prévoir 70% de longueur de plus sur la longueur totale)
- 7 Dispositif de blocage (prévoir 30 mm de plus sur la longueur totale)
- 8 Système d'étanchéité
- B3 Modèle basse température
- NT Modèle haute température
- NT Élément de frottement
- RK Élément de frottement
- V2 Modèle tout acier inoxydable AISI 303/304
- V4 Modèle tout acier inoxydable AISI 316L/316Li

3.2. Cahier des charges et proposition de montage

N° Etude		

Nom du demandeur	:			Sociét	té :		
Adresse :							
					étitif, besoin annuel :		
Cahier des cha							
+90°		F _H Angle d'ouverture		Angle init	tial (en degrés)	+ -	
*•	Contro	de gravité		Angle d'o	ouverture (en degrés)	min max	
-X P2 (x/y)	F _G	+X 0°		Rayon dı	ı centre de gravité RG		mm
F2 (X/y)	Angle initial	//		Rayon de	e la force manuelle RH (en mm)		
Espace disponible				Poids FG	(en Newton)		mm
pour le montage -Y	P1 (x/y)	_H : Force manuelle pour ouvrir ou		Largeur o	de la partie mobile		N
-90° O : Axe de rotation F_{\circ} :	centre de gravité	fermer $F_{u} \colon \text{force manuelle ouverture et fe}$	rmoturo	Nb de res	ssorts souhaité		mm
G. Axe de lotation	centre de gravite	H. Torce manuelle ouverture et le	imeture				
Effet recherché: début d'ouverture par une act entre a 0 et a1 ouverture par u maintien en position par les re force manuelle maxi souhaitée	ne action manuelle essorts à gaz	oui non oui non oui non		mini –	°C / maxi e fixations : œillets	°C rotules	
Espace disponible pour le m Points de fixation imposés :	-	sans contrainte Point mobile P1 X = Point fi xe P2 X =			rement (joindre schéma coté) Y = Y =		
Proposition de	e montage	9					
Point de fixation en p	oosition fermée	e (à α _o)	Eta	blie par :			
Point mobile P1 Point fixe P2				a : antité dema			
Référence	Tige (mm)	Course (mm)	For	ce (N)	Fixations	Quantité	
	Ouverture	Fermeture	Remarc	ıue : les rés	ultats communiqués so	ont valables nour l'	utilisation
Efforts manuels (N)	mini:	mini:	de resso	orts à gaz S	TABILUS et ils ne tienno age et du frottement au	ent pas compte de	S
	maxi:	maxi:					

Consulter aussi notre cahier des charges en ligne sur notre site internet

ewellix.com

© Ewellix

All contents of this publication are the property of Ewellix, and may not be reproduced or given to third parties (even extracts) without permission. Although great care has been taken in the production of this catalog, Ewellix does not take any responsibility for damage or other loss resulting from omissions or typographical errors. The photo may differ slightly in appearance from the actual product. Due to continuous improvements being made in our products, the product's appearance and specifications are subject to change without notice.

PUB NUM IL-05005/2-FR-October 2022

Certain image(s) used under license from Shutterstock.com. SKF and SKF logo are trademarks of the SKF Group